Keren Kinneret, Krueger Michael, Gilad Rachel, Ben-Yoseph Gdalyahu, Sivan Uri, Braun Erez
Department of Physics, Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Science. 2002 Jul 5;297(5578):72-5. doi: 10.1126/science.1071247.
Recent advances in the realization of individual molecular-scale electronic devices emphasize the need for novel tools and concepts capable of assembling such devices into large-scale functional circuits. We demonstrated sequence-specific molecular lithography on substrate DNA molecules by harnessing homologous recombination by RecA protein. In a sequence-specific manner, we patterned the coating of DNA with metal, localized labeled molecular objects and grew metal islands on specific sites along the DNA substrate, and generated molecularly accurate stable DNA junctions for patterning the DNA substrate connectivity. In our molecular lithography, the information encoded in the DNA molecules replaces the masks used in conventional microelectronics, and the RecA protein serves as the resist. The molecular lithography works with high resolution over a broad range of length scales from nanometers to many micrometers.
在实现单个分子尺度电子器件方面的最新进展凸显了对新型工具和概念的需求,这些工具和概念能够将此类器件组装成大规模功能电路。我们通过利用RecA蛋白的同源重组,在底物DNA分子上展示了序列特异性分子光刻技术。我们以序列特异性的方式,用金属对DNA涂层进行图案化,定位标记分子对象,并在沿DNA底物的特定位点上生长金属岛,还生成了分子精确的稳定DNA连接以对DNA底物的连通性进行图案化。在我们的分子光刻中,DNA分子中编码的信息取代了传统微电子学中使用的掩膜,而RecA蛋白充当抗蚀剂。这种分子光刻在从纳米到许多微米的广泛长度尺度上都能以高分辨率工作。