元回归分析应如何进行和解释?

How should meta-regression analyses be undertaken and interpreted?

作者信息

Thompson Simon G, Higgins Julian P T

机构信息

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, UK.

出版信息

Stat Med. 2002 Jun 15;21(11):1559-73. doi: 10.1002/sim.1187.

Abstract

Appropriate methods for meta-regression applied to a set of clinical trials, and the limitations and pitfalls in interpretation, are insufficiently recognized. Here we summarize recent research focusing on these issues, and consider three published examples of meta-regression in the light of this work. One principal methodological issue is that meta-regression should be weighted to take account of both within-trial variances of treatment effects and the residual between-trial heterogeneity (that is, heterogeneity not explained by the covariates in the regression). This corresponds to random effects meta-regression. The associations derived from meta-regressions are observational, and have a weaker interpretation than the causal relationships derived from randomized comparisons. This applies particularly when averages of patient characteristics in each trial are used as covariates in the regression. Data dredging is the main pitfall in reaching reliable conclusions from meta-regression. It can only be avoided by prespecification of covariates that will be investigated as potential sources of heterogeneity. However, in practice this is not always easy to achieve. The examples considered in this paper show the tension between the scientific rationale for using meta-regression and the difficult interpretative problems to which such analyses are prone.

摘要

适用于一组临床试验的Meta回归的恰当方法,以及解读中的局限性和陷阱,尚未得到充分认识。在此,我们总结了近期针对这些问题的研究,并根据这项工作对三个已发表的Meta回归实例进行了考量。一个主要的方法学问题是,Meta回归应进行加权,以兼顾治疗效果的试验内方差和试验间的残余异质性(即回归中的协变量无法解释的异质性)。这与随机效应Meta回归相对应。Meta回归得出的关联是观察性的,其解读力度比随机对照得出的因果关系要弱。当将每个试验中患者特征的平均值用作回归中的协变量时,情况尤其如此。数据挖掘是从Meta回归得出可靠结论的主要陷阱。只有通过预先设定将作为异质性潜在来源进行研究的协变量,才能避免这一问题。然而,在实践中这并非总是容易做到的。本文所考量的实例表明了使用Meta回归的科学依据与此类分析容易出现的棘手解读问题之间的矛盾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索