Luo Lusong, Kohli Rahul M, Onishi Megumi, Linne Uwe, Marahiel Mohamed A, Walsh Christopher T
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
Biochemistry. 2002 Jul 23;41(29):9184-96. doi: 10.1021/bi026047+.
The cyclic decapeptide antibiotic tyrocidine has D-Phe residues at positions 1 and 4, produced during peptide chain growth from L-Phe residues by 50 kDa epimerase (E) domains embedded, respectively, in the initiation module (TycA) and the TycB3 module of the three-subunit (TycABC), 10-module nonribosomal peptide synthetase. While the initiation module clearly epimerizes the aminoacyl thioester Phe1-S-TycA intermediate, the timing of epimerization versus peptide bond condensation at internal E domains has been less well characterized in nonribosomal peptide synthetases. In this study, we use rapid quench techniques to evaluate a three-domain (ATE) and a four-domain version (CATE) of the TycB3 module and a six-domain fragment (ATCATE) of the TycB2(-3) bimodule to measure the ability of the E domain in the TycB3 module to epimerize the aminoacyl thioester Phe-S-TycB3 and the dipeptidyl-S-enzyme (L-Phe-L-Phe-S-TycB3 if L-Phe-D-Phe-S-TycB3). The chiralities of the Phe-S-enzyme and Phe-Phe-S-enzyme species over time were determined by hydrolysis and chiral TLC separations, allowing for the clear conclusion that epimerization in the internal TycB3 module occurs preferentially on the peptidyl-S-enzyme rather than the aminoacyl-S-enzyme, by a factor of about 3000/1. In turn, this imposes constraints on the chiral selectivity of the condensation (C) domains immediately upstream and downstream of E domains. The stereoselectivity of the upstream C domain was shown to be L-selective at both donor and acceptor sites ((L)C(L)) by site-directed mutagenesis studies of an E domain active site residue and using the small-molecule surrogate D-Phe-Pro-L-Phe-N-acetylcysteamine thioester (D-Phe-Pro-L-Phe-SNAC) and D-Phe-Pro-D-Phe-SNAC as donor probes.
环状十肽抗生素短杆菌酪肽在第1和第4位含有D-苯丙氨酸残基,它是在肽链生长过程中由50 kDa差向异构酶(E)结构域将L-苯丙氨酸残基转化而来,这些结构域分别嵌入三亚基(TycABC)、10模块非核糖体肽合成酶的起始模块(TycA)和TycB3模块中。虽然起始模块能明确地使氨酰硫酯Phe1-S-TycA中间体发生差向异构化,但在非核糖体肽合成酶中,内部E结构域的差向异构化与肽键缩合的时间关系尚未得到很好的表征。在本研究中,我们使用快速淬灭技术来评估TycB3模块的三结构域(ATE)和四结构域版本(CATE)以及TycB2(-3)双模块的六结构域片段(ATCATE),以测量TycB3模块中的E结构域使氨酰硫酯Phe-S-TycB3和二肽基-S-酶(如果是L-Phe-D-Phe-S-TycB3,则为L-Phe-L-Phe-S-TycB3)发生差向异构化的能力。通过水解和手性TLC分离确定了Phe-S-酶和Phe-Phe-S-酶物种随时间的手性,从而可以明确得出结论,即内部TycB3模块中的差向异构化优先发生在肽基-S-酶而非氨酰基-S-酶上,比例约为3000/1。反过来,这对E结构域上游和下游紧邻的缩合(C)结构域的手性选择性施加了限制。通过对E结构域活性位点残基进行定点诱变研究,并使用小分子替代物D-苯丙氨酸-脯氨酸-L-苯丙氨酸-N-乙酰半胱氨酸硫酯(D-苯丙氨酸-脯氨酸-L-苯丙氨酸-SNAC)和D-苯丙氨酸-脯氨酸-D-苯丙氨酸-SNAC作为供体探针,表明上游C结构域在供体和受体位点均为L-选择性((L)C(L))。