Schins Roel P F
Institut für Umweltmedizinische Forschung, Heinrich-Heine-Universitõt, Düsseldorf, Germany.
Inhal Toxicol. 2002 Jan;14(1):57-78. doi: 10.1080/089583701753338631.
With regard to genotoxicity testing and cancer risk assessment, particles and fibers form a rather specific group among all toxicants. First, the physicochemical behavior of fibrous and nonfibrous particles is usually very different from that of nonparticulate, chemical carcinogens. Reactive oxygen species (ROS) are believed to play a major role in primary genotoxicity of particles, which may derive from their surface properties, the presence of transition metals, intracellular iron mobilization, and lipid peroxidation. Other aspects relevant to primary genotoxicity are particle size, shape, crystallinity (e.g., silica), and solubility, and may also include particle uptake, interaction with cell division machinery (e.g., asbestos), and the presence of mutagens carried with the particle (e.g., diesel exhaust particles, DEP). Excessive and persistent formation of ROS from inflammatory cells is considered as the hallmark of the secondary genotoxicity of nonfibrous and fibrous particles. Since lung inflammation is known to occur and persist only at sufficient particle dose, this secondary pathway is considered to contain a threshold (Greim et al., 2001). Identification of (mechanisms of) particle genotoxicity has been/can be achieved via (1) acellular assays, (2) in vitro tests, (3) in vivo studies, usually in mice or rats, and finally (4) biomarker studies in humans with (occupational) exposure. The significance of acellular assays and biomarker studies for risk assessment is limited, but has provided some mechanistic insights (e.g., in oxidant generating properties of quartz and asbestos) and may also contribute to hazard identification. In vitro studies have lead to identification of primary genotoxic properties of particles, whereas recent in vivo studies provide further support for the correlation between particle-induced lung inflammation and secondary genotoxicity. Proper risk assessment of particles necessitates identification of the relative impact of primary versus secondary genotoxicity in realistic exposure conditions. However, since it is impossible to discern between primary and secondary genotoxicity with current in vivo tests, concomitant in vitro assays are required to determine primary genotoxicity. In vivo tests should ideally be designed using different doses to allow dose-effect analysis for both inflammation and genotoxicity.
关于遗传毒性测试和癌症风险评估,在所有有毒物质中,颗粒和纤维构成了一个相当特殊的类别。首先,纤维状和非纤维状颗粒的物理化学行为通常与非颗粒状化学致癌物有很大不同。活性氧(ROS)被认为在颗粒的原发性遗传毒性中起主要作用,这可能源于它们的表面性质、过渡金属的存在、细胞内铁的动员以及脂质过氧化。与原发性遗传毒性相关的其他方面包括颗粒大小、形状、结晶度(如二氧化硅)和溶解度,还可能包括颗粒摄取、与细胞分裂机制的相互作用(如石棉)以及颗粒携带的诱变剂的存在(如柴油尾气颗粒,DEP)。炎症细胞中ROS的过度和持续形成被认为是非纤维状和纤维状颗粒继发性遗传毒性的标志。由于已知肺部炎症仅在足够的颗粒剂量下才会发生并持续,因此这条继发性途径被认为存在一个阈值(Greim等人,2001年)。颗粒遗传毒性(机制)的鉴定已经/可以通过以下方式实现:(1)无细胞试验,(2)体外试验,(3)体内研究,通常在小鼠或大鼠中进行,最后(4)对有(职业)暴露的人类进行生物标志物研究。无细胞试验和生物标志物研究对风险评估的意义有限,但提供了一些机制性见解(如石英和石棉的氧化剂生成特性),也可能有助于危害识别。体外研究已导致确定颗粒的原发性遗传毒性特性,而最近的体内研究进一步支持了颗粒诱导的肺部炎症与继发性遗传毒性之间的相关性。对颗粒进行正确的风险评估需要确定在实际暴露条件下原发性遗传毒性与继发性遗传毒性的相对影响。然而,由于目前的体内试验无法区分原发性和继发性遗传毒性,因此需要同时进行体外试验来确定原发性遗传毒性。理想情况下,体内试验应设计使用不同剂量,以便对炎症和遗传毒性进行剂量效应分析。