文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒在癌症治疗中的亚细胞性能。

Subcellular Performance of Nanoparticles in Cancer Therapy.

机构信息

Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China.

College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China.

出版信息

Int J Nanomedicine. 2020 Feb 5;15:675-704. doi: 10.2147/IJN.S226186. eCollection 2020.


DOI:10.2147/IJN.S226186
PMID:32103936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7008395/
Abstract

With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.

摘要

随着纳米技术的出现,由于纳米尺寸材料的有利形态、物理化学和功能特性,各种传统治疗策略模式得到了广泛的转变,这些特性在各种生物医学应用中引起了人们的极大兴趣,例如诊断、传感、成像和药物输送。尽管它们在输送治疗剂方面取得了成功,但几种传统的纳米载体往往缺乏选择性和不理想的治疗效果,这极大地限制了它们的临床适用性。为了提高选择性以实现对癌细胞的理想治疗效果,主要通过靶向配体使纳米颗粒精确进入肿瘤细胞,并随后根据特定的生物或外部刺激来输送治疗货物,从而在改进方面取得了进展。然而,细胞内有足够的空间,各种小尺寸的纳米材料可以在其中积累,并通过激活精确的癌细胞死亡途径来显著发挥潜在的特定抗肿瘤作用机制,这是可以探索的。在这篇综述中,我们旨在总结纳米颗粒的细胞内途径,强调其在亚细胞结构中的破坏作用的原理和状态,以及传统治疗方法的当前局限性。接下来,我们概述了各种细胞器情况下(特别是内体或溶酶体、线粒体、细胞核、内质网和高尔基体)内化纳米颗粒的亚细胞性能和命运,通过综合强调一系列有趣的报告中的独特机制来全面强调这些内容。此外,强调了内化纳米颗粒的细胞内转化、这些相互依存的亚细胞成分在癌症治疗中的显著结果和潜在影响。最后,我们以重点关注其临床应用中的当代挑战的观点来进行总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/b6804ae8d484/IJN-15-675-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/71bb1e7ec0dc/IJN-15-675-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/4751b4de7879/IJN-15-675-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/2ac4ffbdde37/IJN-15-675-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/ddd6ada112c4/IJN-15-675-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/3b2c9f91f4a6/IJN-15-675-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/0025b07c6961/IJN-15-675-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/b6804ae8d484/IJN-15-675-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/71bb1e7ec0dc/IJN-15-675-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/4751b4de7879/IJN-15-675-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/2ac4ffbdde37/IJN-15-675-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/ddd6ada112c4/IJN-15-675-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/3b2c9f91f4a6/IJN-15-675-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/0025b07c6961/IJN-15-675-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/7008395/b6804ae8d484/IJN-15-675-g0007.jpg

相似文献

[1]
Subcellular Performance of Nanoparticles in Cancer Therapy.

Int J Nanomedicine. 2020-2-5

[2]
Organelle targeting: third level of drug targeting.

Drug Des Devel Ther. 2013-7-17

[3]
Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale.

Acc Chem Res. 2012-4-30

[4]
In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy.

Adv Mater. 2023-5

[5]
Organelle Targeted Drug Delivery: Key Challenges, Recent Advancements and Therapeutic Implications.

Endocr Metab Immune Disord Drug Targets. 2024

[6]
Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges.

Ther Deliv. 2017-10

[7]
Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers.

Sci Rep. 2017-3-31

[8]
Targeting of nanoparticles in cancer: drug delivery and diagnostics.

Anticancer Drugs. 2011-11

[9]
Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

Theranostics. 2017-1-7

[10]
Nanoparticles for Cancer Targeting: Current and Future Directions.

Curr Drug Deliv. 2016

引用本文的文献

[1]
Near-infrared-triggered copper-doped carbon nitride nanocomposite inducing domino effect for synergistic tumor therapy and immune microenvironment reprogramming.

Mater Today Bio. 2025-7-25

[2]
Biosynthesis of silver nanoparticles from plant extracts: a comprehensive review focused on anticancer therapy.

Front Pharmacol. 2025-5-14

[3]
Dietary Fiber and Cancer Management: A Twenty-Five-Year Bibliometric Review of Research Trends and Directions.

Biomed Res Int. 2025-4-29

[4]
Mechanistic Insights into Sphingomyelin Nanoemulsions as Drug Delivery Systems for Non-Small Cell Lung Cancer Therapy.

Pharmaceutics. 2025-4-2

[5]
Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating?

Bioact Mater. 2025-3-13

[6]
Trypsin-instructed bioactive peptide nanodrugs with cascading transformations to improve chemotherapy against colon cancer.

J Nanobiotechnology. 2025-1-31

[7]
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells.

Chem Eng J. 2024-10-15

[8]
Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles.

Int J Pharm X. 2024-8-28

[9]
Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management.

Front Pharmacol. 2024-8-23

[10]
Delivery of a STING Agonist Using Lipid Nanoparticles Inhibits Pancreatic Cancer Growth.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Endosomal/lysosomal location of organically modified silica nanoparticles following caveolae-mediated endocytosis.

RSC Adv. 2019-5-7

[2]
Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors.

ACS Biomater Sci Eng. 2017-10-9

[3]
Cardiac Tissue Engineering on the Nanoscale.

ACS Biomater Sci Eng. 2018-3-12

[4]
Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics.

J Mater Chem B. 2017-2-21

[5]
A versatile stimulus-responsive metal-organic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery.

J Mater Chem B. 2017-3-21

[6]
Tumor therapy: targeted drug delivery systems.

J Mater Chem B. 2016-11-14

[7]
Plasmonic CuS nanodisk assembly based composite nanocapsules for NIR-laser-driven synergistic chemo-photothermal cancer therapy.

J Mater Chem B. 2018-2-21

[8]
Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective.

Asian J Pharm Sci. 2017-11

[9]
Antiadhesive Nanosomes Facilitate Targeting of the Lysosomal GlcNAc Salvage Pathway through Derailed Cancer Endocytosis.

Angew Chem Int Ed Engl. 2019-8-30

[10]
Chondroitin Sulfate-Linked Prodrug Nanoparticles Target the Golgi Apparatus for Cancer Metastasis Treatment.

ACS Nano. 2019-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索