金属纳米颗粒产生活性氧物种的生物医学应用

Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles.

作者信息

Canaparo Roberto, Foglietta Federica, Limongi Tania, Serpe Loredana

机构信息

Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.

Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

出版信息

Materials (Basel). 2020 Dec 24;14(1):53. doi: 10.3390/ma14010053.

Abstract

The design, synthesis and characterization of new nanomaterials represents one of the most dynamic and transversal aspects of nanotechnology applications in the biomedical field. New synthetic and engineering improvements allow the design of a wide range of biocompatible nanostructured materials (NSMs) and nanoparticles (NPs) which, with or without additional chemical and/or biomolecular surface modifications, are more frequently employed in applications for successful diagnostic, drug delivery and therapeutic procedures. Metal-based nanoparticles (MNPs) including metal NPs, metal oxide NPs, quantum dots (QDs) and magnetic NPs, thanks to their physical and chemical properties have gained much traction for their functional use in biomedicine. In this review it is highlighted how the generation of reactive oxygen species (ROS), which in many respects could be considered a negative aspect of the interaction of MNPs with biological matter, may be a surprising nanotechnology weapon. From the exchange of knowledge between branches such as materials science, nanotechnology, engineering, biochemistry and medicine, researchers and clinicians are setting and standardizing treatments by tuning ROS production to induce cancer or microbial cell death.

摘要

新型纳米材料的设计、合成与表征是纳米技术在生物医学领域应用中最具活力和交叉性的方面之一。新的合成与工程改进使得人们能够设计出多种生物相容性纳米结构材料(NSM)和纳米颗粒(NP),无论有无额外的化学和/或生物分子表面修饰,它们都越来越多地应用于成功的诊断、药物递送和治疗程序中。包括金属NP、金属氧化物NP、量子点(QD)和磁性NP在内的金属基纳米颗粒(MNP),由于其物理和化学性质,在生物医学的功能应用中备受关注。在这篇综述中,强调了活性氧(ROS)的产生,尽管在许多方面它可被视为MNP与生物物质相互作用的一个负面因素,但它可能是一种令人惊讶的纳米技术武器。通过材料科学、纳米技术、工程学、生物化学和医学等学科之间的知识交流,研究人员和临床医生正在通过调节ROS的产生来诱导癌症或微生物细胞死亡,从而制定并规范治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a15/7795539/77e26b76789e/materials-14-00053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索