Pain Frédéric, Besret Laurent, Vaufrey Francoise, Grégoire Marie-Claude, Pinot Laurent, Gervais Philippe, Ploux Lydie, Bloch Gilles, Mastrippolito Roland, Lanièce Philippe, Hantraye Philippe
Institut de Physique Nucléaire, Interface Physique-Biologie, 91406 Orsay, France.
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10807-12. doi: 10.1073/pnas.162368899. Epub 2002 Jul 22.
Understanding brain disorders, the neural processes implicated in cognitive functions and their alterations in neurodegenerative pathologies, or testing new therapies for these diseases would benefit greatly from combined use of an increasing number of rodent models and neuroimaging methods specifically adapted to the rodent brain. Besides magnetic resonance (MR) imaging and functional MR, positron-emission tomography (PET) remains a unique methodology to study in vivo brain processes. However, current high spatial-resolution tomographs suffer from several technical limitations such as high cost, low sensitivity, and the need of restraining the animal during image acquisition. We have developed a beta(+)-sensitive high temporal-resolution system that overcomes these problems and allows the in vivo quantification of cerebral biochemical processes in rodents. This beta-MICROPROBE is an in situ technique involving the insertion of a fine probe into brain tissue in a way very similar to that used for microdialysis and cell electrode recordings. In this respect, it provides information on molecular interactions and pathways, which is complementary to that produced by these technologies as well as other modalities such as MR or fluorescence imaging. This study describes two experiments that provide a proof of concept to substantiate the potential of this technique and demonstrate the feasibility of quantifying brain activation or metabolic depression in individual living rats with 2-[(18)F]fluoro-2-deoxy-d-glucose and standard compartmental modeling techniques. Furthermore, it was possible to identify correctly the origin of variations in glucose consumption at the hexokinase level, which demonstrate the strength of the method and its adequacy for in vivo quantitative metabolic studies in small animals.
了解脑部疾病、认知功能所涉及的神经过程及其在神经退行性病变中的改变,或者测试针对这些疾病的新疗法,将极大地受益于越来越多专门适用于啮齿动物大脑的啮齿动物模型和神经成像方法的联合使用。除了磁共振(MR)成像和功能磁共振成像外,正电子发射断层扫描(PET)仍然是研究活体脑过程的独特方法。然而,当前的高空间分辨率断层扫描仪存在一些技术局限性,如成本高、灵敏度低以及在图像采集过程中需要限制动物活动。我们开发了一种对β(+)敏感的高时间分辨率系统,该系统克服了这些问题,并允许对啮齿动物大脑中的脑生化过程进行活体定量分析。这种β微探针是一种原位技术,涉及将一根细探针插入脑组织,其方式与用于微透析和细胞电极记录的方式非常相似。在这方面,它提供了关于分子相互作用和途径的信息,这与这些技术以及其他成像方式(如MR或荧光成像)所产生的信息互为补充。本研究描述了两个实验,这些实验提供了概念验证,以证实该技术的潜力,并证明使用2-[(18)F]氟-2-脱氧-d-葡萄糖和标准隔室建模技术对个体活体大鼠的脑激活或代谢抑制进行定量分析的可行性。此外,有可能在己糖激酶水平正确识别葡萄糖消耗变化的来源,这证明了该方法的优势及其适用于小动物活体定量代谢研究的能力。