Suppr超能文献

iGPCR-drug:用于预测细胞网络中 GPCR 与药物相互作用的网络服务器。

iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

机构信息

Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China ; Information School, ZheJiang Textile and Fashion College, NingBo, China ; Gordon Life Science Institute, Belmont, Massachusetts, United States of America.

出版信息

PLoS One. 2013 Aug 27;8(8):e72234. doi: 10.1371/journal.pone.0072234. eCollection 2013.

Abstract

Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition) generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

摘要

涉及癌症、糖尿病、神经退行性疾病、炎症和呼吸系统疾病等多种疾病,G 蛋白偶联受体(GPCR)是治疗药物最常见的靶点之一。纯粹通过实验技术确定药物和 GPCR 是否在细胞网络中相互作用既耗时又昂贵。尽管在这方面已经基于蛋白质 3D(三维)结构的知识开发了一些计算方法,但不幸的是,由于大多数 GPCR 的 3D 结构仍然未知,因此它们的使用非常有限。为了克服这种情况,开发了一种基于序列的分类器,称为“iGPCR-drug”,用于预测细胞网络中 GPCR 与药物之间的相互作用。在预测器中,药物化合物通过 256D 向量的 2D(二维)指纹图进行配方,GPCR 通过灰色模型理论生成的 PseAAC(伪氨基酸组成)进行配方,预测引擎由模糊 K-最近邻算法操作。此外,在 http://www.jci-bioinfo.cn/iGPCR-Drug/ 上建立了一个用于 iGPCR-drug 的用户友好型网络服务器。为了方便大多数实验科学家,提供了一个分步指南,说明如何使用网络服务器获得所需的结果,而无需遵循本文中为完整性而呈现的复杂数学方程。通过 Jackknife 测试,iGPCR-drug 的总体成功率为 85.5%,明显高于 2010 年开发的现有同类方法的成功率,尽管它从未为此建立过网络服务器。预计 iGPCR-Drug 可能成为基础研究和药物开发的有用高通量工具,并且这里提出的方法也可以扩展到研究其他药物-靶标相互作用网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56f/3754978/02859a308d4b/pone.0072234.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验