Suppr超能文献

作为离子通道模型的连续介质理论检验。I. 泊松-玻尔兹曼理论与布朗动力学

Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics.

作者信息

Moy G, Corry B, Kuyucak S, Chung S H

机构信息

Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia.

出版信息

Biophys J. 2000 May;78(5):2349-63. doi: 10.1016/S0006-3495(00)76780-4.

Abstract

Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.

摘要

电解质连续介质理论被广泛用于描述各种生物系统中的物理过程。尽管这些理论在宏观情况下已经确立,但从一开始并不清楚它们是否适用于尺寸与德拜长度相当或小于德拜长度的小系统。在这里,我们通过将泊松-玻尔兹曼理论中的平均场近似预测与布朗动力学模拟的预测进行比较,来检验其有效性。为此,我们使用了球形和圆柱形边界以及类似于乙酰胆碱受体通道的悬链线形状。假设充满电解质的内部区域具有高介电常数,而代表蛋白质的外部区域具有低介电常数。两种方法得到的作用在测试离子上的力的比较表明,当离子位于边界的德拜长度范围内时,泊松-玻尔兹曼理论高估了反离子的屏蔽效应。随着离子靠近边界,力的差异迅速增大。对于半径通常小于德拜长度的膜通道而言,这意味着不能使用泊松-玻尔兹曼理论来可靠地估计通道环境中离子的静电势能和力。

相似文献

3
Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
Biophys J. 2003 Jun;84(6):3594-606. doi: 10.1016/S0006-3495(03)75091-7.
4
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
5
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
6
Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study.
Biophys J. 1998 Dec;75(6):2767-82. doi: 10.1016/S0006-3495(98)77720-3.
8
Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.
PLoS One. 2011;6(6):e21204. doi: 10.1371/journal.pone.0021204. Epub 2011 Jun 23.
9
A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
Bull Math Biol. 2016 Aug;78(8):1703-26. doi: 10.1007/s11538-016-0196-7. Epub 2016 Aug 1.
10
Dielectric boundary force and its crucial role in gramicidin.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021905. doi: 10.1103/PhysRevE.68.021905. Epub 2003 Aug 13.

引用本文的文献

1
Molecular architecture of black widow spider neurotoxins.
Nat Commun. 2021 Nov 29;12(1):6956. doi: 10.1038/s41467-021-26562-8.
2
Frontiers in biomolecular mesh generation and molecular visualization systems.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):7. doi: 10.1186/s42492-018-0007-0.
3
The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems.
R Soc Open Sci. 2018 Aug 1;5(8):180920. doi: 10.1098/rsos.180920. eCollection 2018 Aug.
4
Molecular dynamics simulations of membrane proteins.
Biophys Rev. 2012 Sep;4(3):271-282. doi: 10.1007/s12551-012-0084-9. Epub 2012 Sep 1.
5
Gating Charge Calculations by Computational Electrophysiology Simulations.
Biophys J. 2017 Apr 11;112(7):1396-1405. doi: 10.1016/j.bpj.2017.02.016.
6
Diffusion of Charged Species in Liquids.
Sci Rep. 2016 Nov 4;6:35211. doi: 10.1038/srep35211.
8
Physics of ion channels.
J Biol Phys. 2003 Dec;29(4):429-46. doi: 10.1023/A:1027309113522.
9
Permeation models and structure-function relationships in ion channels.
J Biol Phys. 2002 Jun;28(2):289-308. doi: 10.1023/A:1019939900568.
10
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.

本文引用的文献

2
Permeation of ions across the potassium channel: Brownian dynamics studies.
Biophys J. 1999 Nov;77(5):2517-33. doi: 10.1016/S0006-3495(99)77087-6.
3
From structure to function in open ionic channels.
J Membr Biol. 1999 Sep 1;171(1):1-24. doi: 10.1007/s002329900554.
4
Modeling of ion channels.
J Gen Physiol. 1999 Jun;113(6):789-94. doi: 10.1085/jgp.113.6.789.
5
Ionic hopping defended.
J Gen Physiol. 1999 Jun;113(6):783-7. doi: 10.1085/jgp.113.6.783.
6
Progress and prospects in permeation.
J Gen Physiol. 1999 Jun;113(6):773-82. doi: 10.1085/jgp.113.6.773.
7
Calcium channel permeation: A field in flux.
J Gen Physiol. 1999 Jun;113(6):765-72. doi: 10.1085/jgp.113.6.765.
8
Exploration of the structural features defining the conduction properties of a synthetic ion channel.
Biophys J. 1999 Feb;76(2):618-30. doi: 10.1016/S0006-3495(99)77230-9.
9
Electrokinetic properties of the sarcoplasmic reticulum membrane obtained from reconstitution studies.
J Membr Biol. 1999 Jan 15;167(2):151-63. doi: 10.1007/s002329900479.
10
Membrane surface-charge titration probed by gramicidin A channel conductance.
Biophys J. 1998 Oct;75(4):1783-92. doi: 10.1016/S0006-3495(98)77620-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验