脑电图源连接性分析:从密集阵列记录到脑网络
EEG source connectivity analysis: from dense array recordings to brain networks.
作者信息
Hassan Mahmoud, Dufor Olivier, Merlet Isabelle, Berrou Claude, Wendling Fabrice
机构信息
INSERM, U642, Rennes, France; Université de Rennes 1, LTSI, Rennes, France.
Télécom Bretagne, Institut Mines-Télécom, UMR CNRS Lab-STICC, Brest, France.
出版信息
PLoS One. 2014 Aug 12;9(8):e105041. doi: 10.1371/journal.pone.0105041. eCollection 2014.
The recent past years have seen a noticeable increase of interest for electroencephalography (EEG) to analyze functional connectivity through brain sources reconstructed from scalp signals. Although considerable advances have been done both on the recording and analysis of EEG signals, a number of methodological questions are still open regarding the optimal way to process the data in order to identify brain networks. In this paper, we analyze the impact of three factors that intervene in this processing: i) the number of scalp electrodes, ii) the combination between the algorithm used to solve the EEG inverse problem and the algorithm used to measure the functional connectivity and iii) the frequency bands retained to estimate the functional connectivity among neocortical sources. Using High-Resolution (hr) EEG recordings in healthy volunteers, we evaluated these factors on evoked responses during picture recognition and naming task. The main reason for selection this task is that a solid literature background is available about involved brain networks (ground truth). From this a priori information, we propose a performance criterion based on the number of connections identified in the regions of interest (ROI) that belong to potentially activated networks. Our results show that the three studied factors have a dramatic impact on the final result (the identified network in the source space) as strong discrepancies were evidenced depending on the methods used. They also suggest that the combination of weighted Minimum Norm Estimator (wMNE) and the Phase Synchronization (PS) methods applied on High-Resolution EEG in beta/gamma bands provides the best performance in term of topological distance between the identified network and the expected network in the above-mentioned cognitive task.
在过去几年中,人们对通过从头皮信号重建脑源来分析功能连接的脑电图(EEG)的兴趣显著增加。尽管在EEG信号的记录和分析方面已经取得了相当大的进展,但在如何以最佳方式处理数据以识别脑网络方面,仍有一些方法学问题有待解决。在本文中,我们分析了在该处理过程中起作用的三个因素的影响:i)头皮电极的数量,ii)用于解决EEG逆问题的算法与用于测量功能连接的算法之间的组合,以及iii)用于估计新皮质源之间功能连接的保留频段。我们使用健康志愿者的高分辨率(hr)EEG记录,在图片识别和命名任务期间对这些因素在诱发反应上进行了评估。选择此任务的主要原因是关于所涉及的脑网络(已知事实)有坚实的文献背景。基于此先验信息,我们提出了一个基于在属于潜在激活网络的感兴趣区域(ROI)中识别的连接数量的性能标准。我们的结果表明,这三个研究因素对最终结果(源空间中识别的网络)有巨大影响,因为根据所使用的方法存在明显差异。它们还表明,在β/γ频段应用于高分辨率EEG的加权最小范数估计器(wMNE)和相位同步(PS)方法的组合,在上述认知任务中,就识别的网络与预期网络之间的拓扑距离而言,提供了最佳性能。