Suppr超能文献

拟南芥幼苗中光敏色素介导的PHYA和PHYB - GUS转基因的光调节

Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings.

作者信息

Somers D. E., Quail P. H.

机构信息

Department of Plant Biology, University of California, Berkeley, Berkeley, California 94720.

出版信息

Plant Physiol. 1995 Feb;107(2):523-534. doi: 10.1104/pp.107.2.523.

Abstract

Phytochrome wild-type gene-[beta]-glucuronidase (PHY-GUS) gene fusions were used in transgenic Arabidopsis to compare the activity levels and light regulation of the PHYA and PHYB promoters and to identify the photoreceptors mediating this regulation. In dark-grown seedlings, both promoters are 4-fold more active in shoots than in roots,but the PHYA promoter is nearly 20-fold more active than that of PHYB in both organs. In shoots, white light represses the activities of the PHYA and PHYB promoters 10- and 2-fold, respectively, whereas in roots light has no effect on the PHYA promoter but increases PHYB promoter activity 2-fold. Consequently, PHYA promoter activity remains higher than that of PHYB in light in both shoots (5-fold) and roots (11-fold). Experiments with narrow-waveband light and photomorphogenic mutants suggest that no single photoreceptor is necessary for full white-light-directed PHYA repression in shoots, but that multiple, independent photoreceptor pathways are sufficient alone or in combination. In contrast, phytochrome B appears both necessary and sufficient for a light-mediated decrease in PHYB activity in shoots, and phytochrome A mediates a far-red-light-stimulated increase in PHYB promoter activity. Together, the data indicate that the PHYA and PHYB genes are regulated in divergent fashion at the transcriptional level, both developmentally and by the spectral distribution of the prevailing light, and that this regulation may be important to the photosensory function of the two photoreceptors.

摘要

在转基因拟南芥中使用了光敏色素野生型基因与β-葡萄糖醛酸酶(PHY-GUS)基因的融合体,以比较PHYA和PHYB启动子的活性水平及光调节作用,并鉴定介导这种调节的光感受器。在黑暗中生长的幼苗中,两个启动子在地上部分的活性均比根中高4倍,但在两个器官中,PHYA启动子的活性比PHYB启动子高近20倍。在地上部分,白光分别使PHYA和PHYB启动子的活性降低10倍和2倍,而在根中,光对PHYA启动子没有影响,但使PHYB启动子的活性增加2倍。因此,在光照下,地上部分(5倍)和根中(11倍)的PHYA启动子活性仍然高于PHYB启动子。窄带光和光形态建成突变体的实验表明,对于地上部分完全由白光介导的PHYA抑制作用,单一光感受器并非必需,但多个独立的光感受器途径单独或组合起来就足够了。相比之下,光敏色素B似乎对于地上部分光介导的PHYB活性降低既是必需的也是充分的,而光敏色素A介导远红光刺激的PHYB启动子活性增加。总之,数据表明PHYA和PHYB基因在转录水平上以不同方式受到发育调节以及主要光照的光谱分布调节,并且这种调节可能对这两种光感受器的光感功能很重要。

相似文献

2
Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis.
Plant J. 1995 Mar;7(3):413-27. doi: 10.1046/j.1365-313x.1995.7030413.x.
4
Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis.
Plant Physiol. 1999 Dec;121(4):1207-16. doi: 10.1104/pp.121.4.1207.
6
Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes.
Plant Physiol. 1997 Nov;115(3):959-69. doi: 10.1104/pp.115.3.959.
7
Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129-33. doi: 10.1073/pnas.93.15.8129.
10
Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction.
Planta. 1999 Apr;208(2):257-63. doi: 10.1007/s004250050557.

引用本文的文献

1
Guard-cell phytochromes impact seedling photomorphogenesis and rosette leaf morphology.
MicroPubl Biol. 2022 Jan 31;2022. doi: 10.17912/micropub.biology.000521. eCollection 2022.
3
Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana.
PLoS Biol. 2019 Aug 15;17(8):e3000407. doi: 10.1371/journal.pbio.3000407. eCollection 2019 Aug.
5
Bottom-up Assembly of the Phytochrome Network.
PLoS Genet. 2016 Nov 7;12(11):e1006413. doi: 10.1371/journal.pgen.1006413. eCollection 2016 Nov.
6
Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back.
Front Plant Sci. 2016 Apr 11;7:480. doi: 10.3389/fpls.2016.00480. eCollection 2016.
7
Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings.
Plant Physiol. 2016 Apr;170(4):2278-94. doi: 10.1104/pp.16.00023. Epub 2016 Feb 1.
8
How and why do root apices sense light under the soil surface?
Front Plant Sci. 2015 Sep 24;6:775. doi: 10.3389/fpls.2015.00775. eCollection 2015.
9
Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.
PLoS One. 2014 Dec 12;9(12):e115201. doi: 10.1371/journal.pone.0115201. eCollection 2014.
10
Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12834-9. doi: 10.1073/pnas.1303371110. Epub 2013 Jul 15.

本文引用的文献

1
Phytochrome Levels in Light-Grown Avena Change in Response to End-of-Day Irradiations.
Plant Physiol. 1992 Aug;99(4):1708-10. doi: 10.1104/pp.99.4.1708.
2
Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.
Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40. doi: 10.1073/pnas.85.15.5536.
4
Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis.
Plant Cell. 1991 Dec;3(12):1275-1288. doi: 10.1105/tpc.3.12.1275.
5
The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B.
Plant Cell. 1991 Dec;3(12):1263-1274. doi: 10.1105/tpc.3.12.1263.
6
Red Light-Independent Instability of Oat Phytochrome mRNA in Vivo.
Plant Cell. 1992 Jan;4(1):29-38. doi: 10.1105/tpc.4.1.29.
8
Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A.
Plant Physiol. 1993 May;102(1):269-277. doi: 10.1104/pp.102.1.269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验