Suppr超能文献

重病发作后的护理:一个利用大量交叉集联系来研究临终护理的基于索赔的新型数据集。

Care after the onset of serious illness: a novel claims-based dataset exploiting substantial cross-set linkages to study end-of-life care.

作者信息

Christakis Nicholas A, Iwashyna Theodore J, Zhang James X

机构信息

Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Palliat Med. 2002 Aug;5(4):515-29. doi: 10.1089/109662102760269751.

Abstract

To date, there has not been a study using a large, nationally representative group of patients with serious illness who are at risk for hospice use and who are followed forward in time to understand the determinants of hospice use. In this paper, we outline the development of a large new cohort of 1,221,153 Medicare beneficiaries newly diagnosed with 1 of 13 serious conditions in 1993, a cohort that can be used to study end-of-life care in the United States. In describing our methods, we illustrate the possible utility of Medicare claims for end-of-life research. The members of our cohort are followed forward for hospice and other health care use through December 1997, and for mortality through June 1999. Medicare claims data on their inpatient and outpatient hospital use is also collected. Based on the ZIP Codes and counties in which cohort members lived, we were also able to characterize the health care markets of cohort members, as well as obtain other socioeconomic information about them. Information about cohort member's health care providers is also available. Detailed health information about cohort members' spouses was also collected. We conclude by highlighting the types of analyses that can be conducted in this data set.

摘要

迄今为止,尚未有研究针对大量具有全国代表性的重症患者群体展开,这些患者有接受临终关怀服务的风险,且对其进行了随访以了解临终关怀服务使用的决定因素。在本文中,我们概述了一个新的大型队列的形成,该队列由1993年新诊断出患有13种重症之一的1,221,153名医疗保险受益人组成,这个队列可用于研究美国的临终护理情况。在描述我们的方法时,我们展示了医疗保险理赔数据在临终研究中的潜在用途。我们对该队列的成员进行随访,记录他们截至1997年12月的临终关怀及其他医疗保健服务使用情况,以及截至1999年6月的死亡情况。同时还收集了他们住院和门诊医院使用情况的医疗保险理赔数据。根据队列成员居住的邮政编码和所在县,我们还能够描述队列成员的医疗保健市场特征,并获取有关他们的其他社会经济信息。关于队列成员医疗保健提供者的信息也可获取。此外,我们还收集了队列成员配偶的详细健康信息。最后,我们着重介绍了可在该数据集上进行的分析类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验