Suppr超能文献

介导硒蛋白合成的蛋白质因子。

Protein factors mediating selenoprotein synthesis.

作者信息

Lescure Alain, Fagegaltier Delphine, Carbon Philippe, Krol Alain

机构信息

Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance. Unité Propre de Recherche 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France.

出版信息

Curr Protein Pept Sci. 2002 Feb;3(1):143-51. doi: 10.2174/1389203023380783.

Abstract

The amino acid selenocysteine represents the major biological form of selenium. Both the synthesis of selenocysteine and its co-translational incorporation into selenoproteins in response to an in-frame UGA codon, require a complex molecular machinery. To decode the UGA Sec codon in eubacteria, this machinery comprises the tRNASec, the specialized elongation factor SelB and the SECIS hairpin in the selenoprotein mRNAs. SelB conveys the Sec-tRNASec to the A site of the ribosome through binding to the SECIS mRNA hairpin adjacent to the UGA Sec codon. SelB is thus a bifunctional factor, carrying functional homology to elongation factor EF-Tu in its N-terminal domain and SECIS RNA binding activity via its C-terminal extension. In archaea and eukaryotes, selenocysteine incorporation exhibits a higher degree of complexity because the SECIS hairpin is localized in the 3' untranslated region of the mRNA. In the last couple of years, remarkable progress has been made toward understanding the underlying mechanism in mammals. Indeed, the discovery of the SECIS RNA binding protein SBP2, which is not a translation factor, paved the way for the subsequent isolation of mSelB/EFSec, the mammalian homolog of SelB. In contrast to the eubacterial SelB, the specialized elongation factor mSelB/EFSec the SECIS RNA binding function. The role is carried out by SBP2 that also forms a protein-protein complex with mSelB/EFSec. As a consequence, an important difference between the eubacterial and eukaryal selenoprotein synthesis machineries is that the functions of SelB are divided into two proteins in eukaryotes. Obviously, selenoprotein synthesis represents a higher degree of complexity than anticipated, and more needs to be discovered in eukaryotes. In this review, we will focus on the structural and functional aspects of the SelB and SBP2 factors in selenoprotein synthesis.

摘要

氨基酸硒代半胱氨酸是硒的主要生物形式。硒代半胱氨酸的合成及其响应框内UGA密码子共翻译掺入硒蛋白,都需要复杂的分子机制。为了在真细菌中解码UGA硒代半胱氨酸密码子,该机制包括硒代半胱氨酸转运RNA(tRNASec)、特殊延伸因子SelB和硒蛋白信使核糖核酸(mRNA)中的硒代半胱氨酸插入序列(SECIS)发夹结构。SelB通过与UGA硒代半胱氨酸密码子相邻的SECIS mRNA发夹结构结合,将硒代半胱氨酸-tRNASec转运至核糖体的A位点。因此,SelB是一种双功能因子,其N端结构域与延伸因子EF-Tu具有功能同源性,并通过其C端延伸具有SECIS RNA结合活性。在古细菌和真核生物中,硒代半胱氨酸的掺入表现出更高的复杂性,因为SECIS发夹结构位于mRNA的3'非翻译区。在过去几年里,在理解哺乳动物的潜在机制方面取得了显著进展。事实上,非翻译因子SECIS RNA结合蛋白SBP2的发现,为随后分离SelB的哺乳动物同源物mSelB/EFSec铺平了道路。与真细菌的SelB不同,特殊延伸因子mSelB/EFSec不具备SECIS RNA结合功能。该功能由同样与mSelB/EFSec形成蛋白质-蛋白质复合物的SBP2执行。因此,真细菌和真核生物硒蛋白合成机制的一个重要区别是,在真核生物中SelB的功能被分为两种蛋白质。显然,硒蛋白合成比预期的更为复杂,在真核生物中还有更多有待发现的地方。在本综述中,我们将聚焦于SelB和SBP2因子在硒蛋白合成中的结构和功能方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验