Suppr超能文献

一种新型蛋白质结构域可诱导高亲和力的硒代半胱氨酸插入序列结合及延伸因子招募。

A novel protein domain induces high affinity selenocysteine insertion sequence binding and elongation factor recruitment.

作者信息

Donovan Jesse, Caban Kelvin, Ranaweera Ruchira, Gonzalez-Flores Jonathan N, Copeland Paul R

机构信息

Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2008 Dec 12;283(50):35129-39. doi: 10.1074/jbc.M806008200. Epub 2008 Oct 23.

Abstract

Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3'-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNA(Sec), and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site.

摘要

硒代半胱氨酸(Sec)在其3'-非翻译区含有硒代半胱氨酸插入序列(SECIS)元件的mRNA的UGA密码子处掺入。硒代半胱氨酸掺入至少还需要另外三个因子:SECIS结合蛋白2(SBP2)、硒代半胱氨酸转运RNA(Sec-tRNA(Sec))和一个硒代半胱氨酸特异性翻译延伸因子(eEFSec)。SBP2的C端结构域足以在体外促进硒代半胱氨酸的掺入,这是由一个新的硒代半胱氨酸掺入结构域和一个L7Ae RNA结合结构域协同作用完成的。利用丙氨酸扫描诱变,我们发现硒代半胱氨酸掺入结构域的两个不同区域是硒代半胱氨酸掺入所必需的。硒代半胱氨酸掺入结构域和RNA结合结构域的物理分离表明它们能够反式发挥作用,并确立了硒代半胱氨酸掺入结构域在促进SECIS和eEFSec与SBP2 RNA结合结构域结合方面的新作用。我们提出了一个模型,其中SECIS结合诱导SBP2发生构象变化,从而招募eEFSec,eEFSec与硒代半胱氨酸掺入结构域协同作用进入核糖体A位点。

相似文献

1
A novel protein domain induces high affinity selenocysteine insertion sequence binding and elongation factor recruitment.
J Biol Chem. 2008 Dec 12;283(50):35129-39. doi: 10.1074/jbc.M806008200. Epub 2008 Oct 23.
2
The selenocysteine-specific elongation factor contains a novel and multi-functional domain.
J Biol Chem. 2012 Nov 9;287(46):38936-45. doi: 10.1074/jbc.M112.415463. Epub 2012 Sep 19.
6
Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
RNA Biol. 2014;11(11):1402-13. doi: 10.1080/15476286.2014.996472.
8
Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon.
Science. 2022 Jun 17;376(6599):1338-1343. doi: 10.1126/science.abg3875. Epub 2022 Jun 16.
10
Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements.
J Mol Biol. 2013 Jul 24;425(14):2415-22. doi: 10.1016/j.jmb.2013.04.016. Epub 2013 Apr 23.

引用本文的文献

1
Running a genetic stop sign accelerates oxygen metabolism and energy production in horses.
Science. 2025 Mar 28;387(6741):eadr8589. doi: 10.1126/science.adr8589.
2
Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon.
Science. 2022 Jun 17;376(6599):1338-1343. doi: 10.1126/science.abg3875. Epub 2022 Jun 16.
3
The expression of essential selenoproteins during development requires SECIS-binding protein 2-like.
Life Sci Alliance. 2022 Feb 24;5(5). doi: 10.26508/lsa.202101291. Print 2022 May.
4
Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency.
Int J Mol Sci. 2021 Nov 29;22(23):12927. doi: 10.3390/ijms222312927.
5
Bioinformatics Analyses Reveal the Prognostic Value and Biological Roles of in Various Cancers.
Int J Gen Med. 2021 Sep 24;14:6059-6076. doi: 10.2147/IJGM.S328222. eCollection 2021.
6
The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era.
Antioxidants (Basel). 2021 Jun 25;10(7):1031. doi: 10.3390/antiox10071031.
7
Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Deficiency.
Antioxid Redox Signal. 2020 Sep 1;33(7):481-497. doi: 10.1089/ars.2020.8097. Epub 2020 May 11.
8
Gained in translation: The power of digging deep into disease models.
J Biol Chem. 2019 Sep 27;294(39):14201-14202. doi: 10.1074/jbc.H119.010864.
9
Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs.
J Mol Biol. 2019 Nov 8;431(22):4381-4407. doi: 10.1016/j.jmb.2019.08.007. Epub 2019 Aug 20.
10
Ribosome profiling of selenoproteins reveals consequences of pathogenic missense mutations.
J Biol Chem. 2019 Sep 27;294(39):14185-14200. doi: 10.1074/jbc.RA119.009369. Epub 2019 Jul 26.

本文引用的文献

1
Guanine nucleotide exchange factor independence of the G-protein eEF1A through novel mutant forms and biochemical properties.
J Biol Chem. 2008 Aug 22;283(34):23244-53. doi: 10.1074/jbc.M801095200. Epub 2008 Jun 18.
2
In vivo stabilization of preinitiation complexes by formaldehyde cross-linking.
Methods Enzymol. 2007;429:163-83. doi: 10.1016/S0076-6879(07)29008-1.
6
Supramolecular complexes mediate selenocysteine incorporation in vivo.
Mol Cell Biol. 2006 Mar;26(6):2337-46. doi: 10.1128/MCB.26.6.2337-2346.2006.
7
Size matters: a view of selenocysteine incorporation from the ribosome.
Cell Mol Life Sci. 2006 Jan;63(1):73-81. doi: 10.1007/s00018-005-5402-y.
9
Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
Nat Struct Mol Biol. 2005 May;12(5):408-16. doi: 10.1038/nsmb922. Epub 2005 Apr 10.
10
Efficiency of mammalian selenocysteine incorporation.
J Biol Chem. 2004 Sep 3;279(36):37852-9. doi: 10.1074/jbc.M404639200. Epub 2004 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验