Fuseler J W
J Cell Biol. 1975 Dec;67(3):789-800. doi: 10.1083/jcb.67.3.789.
The time course of chromosome movement and decay of half-spindle birefringence retardation in anaphase have been precisely determined in the endosperm cell of a plant Tilia americana and in the egg of an animal Asterias forbesi. For each species, the anaphase retardation decay rate constant and chromosome velocity are similar exponential functions of temperature. Over the temperature range at which these cells can complete anaphase, chromosome velocity and retardation rate constant yield a positive linear relationship when plotted against each other. At the higher temperatures where the chromosomes move faster, the spindle retardation decays faster, even though the absolute spindle retardation is greater. Chromosome velocity thus parallels the anaphase spindle retardation decay rate, or rate of spindle microtubule depolymerization, rather than absolute spindle retardation, or the amount of microtubules in the spindle. These observations suggest that a common mechanism exists for mitosis in plant and animal cells. The rate of anaphase chromosome movement is associated with an apparent first-order process of spindle fiber disassembly. This process irreversibly prevents spindle fiber subunits from participating in the polymerization equilibrium and removes microtubular subunits from chromosomal spindle fibers.
在美洲椴树的胚乳细胞和福布斯海盘车的卵细胞中,已经精确测定了后期染色体运动的时间进程以及半纺锤体双折射延迟的衰减情况。对于每个物种而言,后期延迟衰减速率常数和染色体速度都是温度的相似指数函数。在这些细胞能够完成后期的温度范围内,将染色体速度和延迟速率常数相互绘制时,会呈现出正线性关系。在染色体移动速度更快的较高温度下,纺锤体延迟衰减得更快,尽管绝对纺锤体延迟更大。因此,染色体速度与后期纺锤体延迟衰减速率,即纺锤体微管解聚速率平行,而不是与绝对纺锤体延迟或纺锤体中的微管数量平行。这些观察结果表明,植物和动物细胞的有丝分裂存在共同机制。后期染色体运动速率与纺锤体纤维拆卸的明显一级过程相关。这个过程不可逆地阻止纺锤体纤维亚基参与聚合平衡,并从染色体纺锤体纤维中去除微管亚基。