Salmon E D, Begg D A
J Cell Biol. 1980 Jun;85(3):853-65. doi: 10.1083/jcb.85.3.853.
In normal anaphase of crane fly spermatocytes, the autosomes traverse most of the distance to the poles at a constant, temperature-dependent velocity. Concurrently, the birefringent kinetochore fibers shorten while retaining a constant birefringent retardation (BR) and width over most of the fiber length as the autosomes approach the centrosome region. To test the dynamic equilibrium model of chromosome poleward movement, we abruptly cooled or heated primary spermatocytes of the crane fly Nephrotoma ferruginea (and the grasshopper Trimerotropis maritima) during early anaphase. According to this model, abrupt cooling should induce transient depolymerization of the kinetochore fiber microtubules, thus producing a transient acceleration in the poleward movement of the autosomal chromosomes, provided the poles remain separated. Abrupt changes in temperature from 22 degrees C to as low as 4 degrees C or as high as 31 degrees C in fact produced immediate changes in chromosome velocity to new constant velocities. No transient changes in velocity were observed. At 4 degrees C (10 degrees C for grasshopper cells), chromosome movement ceased. Although no nonkinetochore fiber BR remained at these low temperatures, kinetochore fiber BR had changed very little. The cold stability of the kinetochore fiber microtubules, the constant velocity character of chromosome movement, and the observed Arrhenius relationship between temperature and chromosome velocity indicate that a rate-limiting catalyzed process is involved in the normal anaphase depolymerization of the spindle fiber microtubules. On the basis of our birefringence observations, the kinetochore fiber microtubules appear to exist in a steady-state balance between comparatively irreversible, and probably different, physiological pathways of polymerization and depolymerization.
在大蚊精母细胞的正常后期,常染色体以恒定的、依赖温度的速度向两极移动大部分距离。同时,当常染色体接近中心体区域时,双折射动粒纤维缩短,而在纤维大部分长度上保持恒定的双折射延迟(BR)和宽度。为了测试染色体向极移动的动态平衡模型,我们在后期早期突然冷却或加热大蚊(Nephrotoma ferruginea)(以及蚱蜢Trimerotropis maritima)的初级精母细胞。根据这个模型,突然冷却应该会诱导动粒纤维微管的瞬时解聚,从而在常染色体向极移动中产生瞬时加速,前提是两极保持分离。实际上,温度从22摄氏度突然变化到低至4摄氏度或高至31摄氏度会立即使染色体速度改变为新的恒定速度。未观察到速度的瞬时变化。在4摄氏度(蚱蜢细胞为10摄氏度)时,染色体移动停止。尽管在这些低温下没有非动粒纤维BR残留,但动粒纤维BR变化很小。动粒纤维微管的冷稳定性、染色体移动的恒定速度特征以及观察到的温度与染色体速度之间的阿伦尼乌斯关系表明,一个限速催化过程参与了纺锤体纤维微管的正常后期解聚。基于我们的双折射观察,动粒纤维微管似乎存在于聚合和解聚的相对不可逆且可能不同的生理途径之间的稳态平衡中。