Maniar Hersh S, Prasad Sunil M, Gaynor Sydney L, Chu Celeste M, Steendijk Paul, Moon Marc R
Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H350-7. doi: 10.1152/ajpheart.00444.2002. Epub 2002 Sep 12.
Optimization of right atrial (RA) mechanics is important for maintaining right ventricular (RV) filling and global cardiac output. However, the impact of pericardial restraint on RA function and the compensatory role of the right atrium to changes in RV afterload remain poorly characterized. In eight open-chest sheep, RA elastance (contractility) and chamber stiffness were measured (RA pressure-volume relations) at baseline and during partial pulmonary artery (PA) occlusion. Data were collected before and after pericardiotomy. With the pericardium intact and partial PA occlusion, RA elastance increased by 28% (P < 0.04), whereas RA stiffness tended to rise (P = 0.08). However, after pericardiotomy, there was a significant fall in both RA elastance (54%, P < 0.04) and stiffness (39%, P < 0.04), and subsequent PA occlusion failed to induce a change in elastance (P > 0.19) or stiffness (P > 0.84). After pericardiotomy, RA elastance and stiffness fell dramatically, and the compensatory response of the right atrium to elevated RV afterload was lost. The ability of the right atrium to respond to changes in RV hemodynamics is highly dependent on pericardial integrity.