Barnes Gareth R, Hillebrand Arjan
The Wellcome Trust Laboratory for MEG Studies, Neurosciences Research Institute, Aston University, Birmingham B4 7ET, United Kingdom.
Hum Brain Mapp. 2003 Jan;18(1):1-12. doi: 10.1002/hbm.10072.
We propose a method of correction for multiple comparisons in MEG beamformer based Statistical Parametric Maps (SPMs). We introduce a modification to the minimum-variance beamformer, in which beamformer weights and SPMs of source-power change are computed in distinct steps. This approach allows the calculation of image smoothness based on the computed weights alone. In the first instance we estimate image smoothness by looking at local spatial correlations in residual images generated using random data; we then go on to show how the smoothness of the SPM can be obtained analytically by measuring the correlations between the adjacent weight vectors. In simulations we show that the smoothness of the SPM is highly inhomogeneous and depends on the source strength. We show that, for the minimum variance beamformer, knowledge of image smoothness is sufficient to allow for correction of the multiple comparison problem. Per-voxel threshold estimates, based on the voxels extent (or cluster size) in flattened space, provide accurate corrected false positive error rates for these highly inhomogeneously smooth images.
我们提出了一种在基于脑磁图(MEG)波束形成器的统计参数映射(SPM)中进行多重比较校正的方法。我们对最小方差波束形成器进行了改进,其中波束形成器权重和源功率变化的SPM是在不同步骤中计算的。这种方法允许仅基于计算出的权重来计算图像平滑度。首先,我们通过查看使用随机数据生成的残差图像中的局部空间相关性来估计图像平滑度;然后我们继续展示如何通过测量相邻权重向量之间的相关性来解析地获得SPM的平滑度。在模拟中我们表明,SPM的平滑度高度不均匀且取决于源强度。我们表明,对于最小方差波束形成器,图像平滑度的知识足以允许校正多重比较问题。基于扁平化空间中的体素范围(或聚类大小)的每个体素阈值估计,为这些高度不均匀平滑的图像提供了准确的校正误报错误率。