Suppr超能文献

神经模糊逻辑和回归计算在确定人体递增试验中最大乳酸稳态功率输出方面的准确性。

Accuracy of neuro-fuzzy logic and regression calculations in determining maximal lactate steady-state power output from incremental tests in humans.

作者信息

Smekal Gerhard, Scharl Arno, von Duvillard Serge P, Pokan Rochus, Baca Arnold, Baron Ramon, Tschan Harald, Hofmann Peter, Bachl Norbert

机构信息

Department of Sports Physiology, Institute for Sport Science, University of Vienna, Austria.

出版信息

Eur J Appl Physiol. 2002 Dec;88(3):264-74. doi: 10.1007/s00421-002-0702-5. Epub 2002 Oct 17.

Abstract

The aim of this study was to employ neuro-fuzzy logic and regression calculations to determine the accuracy of prediction of the power output ( P) of the maximal lactate steady-state (MLSS) on a cycle ergometer calculated from the results of incremental tests. A group of 17 male and 17 female sports students underwent two incremental tests (a 1 min test T(1): initial exercise intensity 0.2 W x kg(-1) increasing 0.2 W x kg(-1) every minute; a 3 min test T(3): initial exercise intensity 0.6 W x kg(-1) increasing 0.6 W x kg(-1) every 3 min) and at least four constant-intensity tests of 30 min duration. Two models for MLSS calculation were developed using the data from T(1) and T(3), a forward stepwise linear regression model (REG) and a neuro-fuzzy model (FUZ). A group of 26 randomly selected subjects (model group, MG) were used to generate the REG and the FUZ models. The data from the remaining 8 subjects (4 men and 4 women; verifying group, VG) were used to verify the REG and FUZ models. The precision of the MLSS calculation in MG produced a better correlation when using data from T(1) (REG r=0.95, FUZ r=0.99) than data from T(3) (REG r=0.88, FUZ r=0.98). Our calculation models were confirmed using data from VG for T(1) (REG r=0.97, FUZ r=0.98) as well as for T(3) (REG r=0.97, FUZ r=0.97). Based on our subject population of young, healthy sport students, our results suggest that a single incremental test may be used for prediction of P at the MLSS using a cycle ergometer. Furthermore, the results from T(1) yielded higher correlations compared to T(3). Calculations from REG were similar to FUZ but the precision of REG and FUZ was better compared to calculations derived using data from a single threshold.

摘要

本研究的目的是运用神经模糊逻辑和回归计算,根据递增测试结果来确定在自行车测功仪上最大乳酸稳态(MLSS)功率输出(P)的预测准确性。一组17名男性和17名女性体育专业学生进行了两项递增测试(1分钟测试T(1):初始运动强度为0.2 W·kg⁻¹,每分钟增加0.2 W·kg⁻¹;3分钟测试T(3):初始运动强度为0.6 W·kg⁻¹,每3分钟增加0.6 W·kg⁻¹)以及至少四项持续30分钟的恒定强度测试。利用T(1)和T(3)的数据开发了两种用于计算MLSS的模型,即向前逐步线性回归模型(REG)和神经模糊模型(FUZ)。一组随机选择的26名受试者(模型组,MG)用于生成REG和FUZ模型。其余8名受试者(4名男性和4名女性;验证组,VG)的数据用于验证REG和FUZ模型。当使用T(1)的数据时,MG中MLSS计算的精度产生了更好的相关性(REG r = 0.95,FUZ r = 0.99),而使用T(3)的数据时相关性则较差(REG r = 0.88,FUZ r = 0.98)。我们的计算模型通过VG中T(1)的数据(REG r = 0.97,FUZ r = 0.98)以及T(3)的数据(REG r = 0.97,FUZ r = 0.97)得到了证实。基于我们年轻、健康的体育专业学生受试者群体,我们的结果表明,使用自行车测功仪时,单次递增测试可用于预测MLSS时的P。此外,与T(3)相比,T(1)的结果具有更高的相关性。REG的计算结果与FUZ相似,但与使用单个阈值数据的计算相比,REG和FUZ的精度更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验