Salamon Z, Hruby V J, Tollin G, Cowell S
Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson 85721, USA.
J Pept Res. 2002 Dec;60(6):322-8. doi: 10.1034/j.1399-3011.2002.21060.x.
Structural changes induced by the binding of agonists, antagonists and inverse agonists to the cloned delta-opioid receptor from human brain immobilized in a solid-supported lipid bilayer were monitored using plasmon-waveguide resonance (PWR) spectroscopy. Agonist (e.g. deltorphin II) binding causes an increase in membrane thickness because of receptor elongation, a mass density increase due to an influx of lipid molecules into the bilayer, and an increase in refractive index anisotropy due to transmembrane helix and fatty acyl chain ordering. In contrast, antagonist (e.g. TIPPpsi) binding produces no measurable change in either membrane thickness or mass density, and a significantly larger increase in refractive index anisotropy, the latter thought to be due to a greater extent of helix and acyl chain ordering within the membrane interior. These results are closely similar to those reported earlier for another agonist (DPDPE) and antagonist (naltrindol) [Salamon et al. (2000) Biophys. J.79, 2463-2474]. In addition, we now find that an inverse agonist (TMT-Tic) produces membrane thickness, mass density and refractive index anisotropy increases which are similar to, but considerably smaller than, those generated by agonists. Thus, a third conformational state is produced by this ligand, different from those formed by agonists and antagonists. These results shed new light on the mechanisms of ligand-induced G-protein-coupled receptor functioning. The potential utilization of this new biophysical method to examine structural changes both parallel and perpendicular to the membrane normal for GPCRs is emphasized.
利用表面等离子体波导共振(PWR)光谱监测激动剂、拮抗剂和反向激动剂与人脑克隆的δ-阿片受体结合时所诱导的结构变化,该受体固定在固体支持的脂质双分子层中。激动剂(如强啡肽II)结合会导致膜厚度增加,这是由于受体伸长;质量密度增加,这是由于脂质分子流入双分子层;以及折射率各向异性增加,这是由于跨膜螺旋和脂肪酰链有序排列。相比之下,拮抗剂(如TIPPpsi)结合在膜厚度或质量密度上没有产生可测量的变化,而折射率各向异性有显著更大的增加,后者被认为是由于膜内部螺旋和酰基链有序排列程度更高。这些结果与之前报道的另一种激动剂(DPDPE)和拮抗剂(纳曲吲哚)的结果非常相似[Salamon等人(2000年)《生物物理学杂志》79卷,2463 - 2474页]。此外,我们现在发现反向激动剂(TMT - Tic)会导致膜厚度、质量密度和折射率各向异性增加,这些增加与激动剂产生的相似,但幅度要小得多。因此,这种配体产生了第三种构象状态,不同于激动剂和拮抗剂形成的构象状态。这些结果为配体诱导的G蛋白偶联受体功能机制提供了新的见解。强调了这种新的生物物理方法在检测GPCRs平行和垂直于膜法线方向的结构变化方面的潜在应用。