Suppr超能文献

Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo.

作者信息

Stampa Bernd, Kühn Bernd, Liess Carsten, Heller Martin, Glüer Claus-C

机构信息

Synarc Deutschland A/S, Hamburg, Germany.

出版信息

Top Magn Reson Imaging. 2002 Oct;13(5):357-63. doi: 10.1097/00002142-200210000-00006.

Abstract

Bone mineral density and bone structure are the main determinants of bone strength in osteoporosis. In this study we used high-resolution magnetic resonance imaging to visualize the bone microstructure in the finger phalanges in vivo and to assess the topological three-dimensional connectivity of the trabecular network and the shape of the trabeculae as measures of bone quality. We visualized the phalanges of young and elderly healthy volunteers in vivo with a spatial resolution of 152 microm x 152 microm x 280 microm. Image processing software to quantify three measures of connectedness was developed and tested: connectivity, global connectivity density, and local connectivity density. Global three-dimensional connectivity ranged from 904 to 1,607 connections. Global connectivity density ranged from 2.9 to 4.7 connections per mm with large intersubject differences. We found a decrease of local connectivity density with growing distance from the joint ranging from 5.1 to 0.2 connections per mm. These preliminary results represent a quantitative description of the well-known rarefication of the trabecular network when moving from epiphysis to the diaphysis. Three-dimensional visualization showed a dense network consisting mostly of rod-like trabeculae at the epiphysis changing to a less dense network of a few plate-like structures near the medullary canal. An algorithm for the quantitative classification of trabecular architecture with regard to plate or rod-like shape was tested for feasibility. We conclude that in vivo assessment of three-dimensional properties of the trabecular network is possible in human phalanges. Determination of connectivity and shape will allow quantification of structural aspects of osteoporotic changes and may improve assessment of fracture risk.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验