Kurosawa Gen, Iwasa Yoh
Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
J Biol Rhythms. 2002 Dec;17(6):568-77. doi: 10.1177/0748730402238239.
From the mathematical study of simple models for circadian rhythm, the authors identified a clear effect of saturation in the enzyme kinetics on the promotion or suppression of a sustained oscillation. In the models, a clock gene (per gene) is transcribed to produce mRNAs, which are translated to produce proteins in the cytosol which are then transported to the nucleus and suppress the transcription of the gene. The negative feedback loop with a long time delay creates sustained oscillation. All the enzymatic reactions (e.g., degradation, translation, and modification) are assumed to be of Michaelis-Menten type. The reaction rate increases with the amount of substrate but saturates when it is very large. The authors prove mathematically that the saturation in any of the reactions included in the feedback loop (in-loop reaction steps) suppresses the oscillation, whereas the saturation of both degradation steps and the back transport of the protein to cytosol (branch reaction steps) makes the oscillation more likely to occur. In the experimental measurements of enzyme kinetics and in published circadian clock simulators, in-loop reaction steps have a small saturation index whereas branch reaction steps have a large saturation index.
通过对昼夜节律简单模型的数学研究,作者发现酶动力学中的饱和现象对持续振荡的促进或抑制具有明显影响。在这些模型中,一个时钟基因(周期基因)被转录产生信使核糖核酸(mRNA),mRNA在细胞质中被翻译产生蛋白质,然后这些蛋白质被转运到细胞核并抑制该基因的转录。具有长时间延迟的负反馈回路产生持续振荡。所有酶促反应(如降解、翻译和修饰)都假定为米氏类型。反应速率随底物量增加而增加,但当底物量非常大时会达到饱和。作者通过数学证明,反馈回路中任何一个反应(回路内反应步骤)的饱和都会抑制振荡,而降解步骤和蛋白质向细胞质的反向转运(分支反应步骤)两者的饱和则使振荡更有可能发生。在酶动力学的实验测量以及已发表的昼夜节律时钟模拟器中,回路内反应步骤的饱和指数较小,而分支反应步骤的饱和指数较大。