Frouin Vincent, Comtat Claude, Reilhac Anthonin, Grégoire Marie-Claude
Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France.
J Nucl Med. 2002 Dec;43(12):1715-26.
PET imaging of D(2) receptors or (18)F-L-dopa metabolism are reference protocols to follow and study neurodegenerative diseases, but the accuracy of striatal PET imaging is limited by the partial-volume effect (PVE). For such studies, the geometric transfer matrix (GTM) method has been proposed to correct the regional mean values for PVE and is now widely used.
The GTM method models the geometric interactions induced by the PET system between the anatomic regions in which PVE correction is performed. This implies estimation of the corresponding regional spread function (RSF). The literature describes 2 implementations for the RSF calculation; they differ in the way the point spread function (PSF) of the imaging system is modeled, but no comparison or discussion has been given. The first and reference implementation uses an accurate intrinsic detector PSF that is applied in the sinogram space. The second uses a global PSF that is applied in the image space. In this work, we compared the 2 GTM implementations for 3-dimensional (3D) PET striatal imaging using Monte Carlo simulations and a phantom study. We studied the robustness of the GTM correction with respect to residual registration errors between PET and anatomy and with respect to residual segmentation errors.
Despite the differences in RSF calculation and computation cost between the 2 implementations, similar recovery results were obtained (between 95% and 100%). The study of robustness of the GTM correction yielded 2 results. A realistic residual misregistration between the anatomic and PET images did not modify the algorithm accuracy but decreased its precision. Conversely, a realistic residual missegmentation of the anatomic regions submitted to GTM correction decreased the correction accuracy.
A simple but efficient implementation in the image space of the GTM method yields accurate PVE correction in striatal regions in studies with 3D PET and enables clinical use. The method is less sensitive to residual misregistration errors between PET and anatomy than to residual missegmentation of the anatomy. Special care should be taken with segmentation of the regions to correct for PVE.
对D(2)受体进行正电子发射断层显像(PET)或(18)F-L-多巴代谢研究是用于跟踪和研究神经退行性疾病的参考方案,但纹状体PET成像的准确性受部分容积效应(PVE)限制。对于此类研究,已提出几何传递矩阵(GTM)方法来校正PVE的区域平均值,且该方法目前已被广泛使用。
GTM方法对PET系统在进行PVE校正的解剖区域之间引起的几何相互作用进行建模。这意味着要估计相应的区域扩散函数(RSF)。文献中描述了RSF计算的两种实现方式;它们在成像系统点扩散函数(PSF)的建模方式上有所不同,但未进行比较或讨论。第一种也是参考实现方式使用在正弦图空间中应用的精确固有探测器PSF。第二种使用在图像空间中应用的全局PSF。在这项工作中,我们使用蒙特卡罗模拟和体模研究比较了用于三维(3D)PET纹状体成像的两种GTM实现方式。我们研究了GTM校正相对于PET与解剖结构之间的残余配准误差以及相对于残余分割误差的稳健性。
尽管两种实现方式在RSF计算和计算成本上存在差异,但获得了相似的恢复结果(在95%至100%之间)。对GTM校正稳健性的研究得出了两个结果。解剖图像与PET图像之间实际存在的残余配准误差不会改变算法的准确性,但会降低其精度。相反,对接受GTM校正的解剖区域进行实际存在的残余错误分割会降低校正准确性。
GTM方法在图像空间中的一种简单但有效的实现方式在3D PET研究中能在纹状体区域实现准确的PVE校正,并可用于临床。该方法对PET与解剖结构之间的残余配准误差的敏感度低于对解剖结构残余错误分割的敏感度。在对要进行PVE校正的区域进行分割时应格外小心。