Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31789-31799. doi: 10.1073/pnas.2013968117. Epub 2020 Dec 2.
Current approaches for the production of high-value compounds in microorganisms mostly use the cytosol as a general reaction vessel. However, competing pathways and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Eukaryotic cells control the complexity of their metabolism by harnessing organelles to insulate biochemical pathways. Inspired by this concept, herein we transform yeast peroxisomes into microfactories for geranyl diphosphate-derived compounds, focusing on monoterpenoids, monoterpene indole alkaloids, and cannabinoids. We introduce a complete mevalonate pathway in the peroxisome to convert acetyl-CoA to several commercially important monoterpenes and achieve up to 125-fold increase over cytosolic production. Furthermore, peroxisomal production improves subsequent decoration by cytochrome P450s, supporting efficient conversion of ()-(-)-limonene to the menthol precursor -isopiperitenol. We also establish synthesis of 8-hydroxygeraniol, the precursor of monoterpene indole alkaloids, and cannabigerolic acid, the cannabinoid precursor. Our findings establish peroxisomal engineering as an efficient strategy for the production of isoprenoids.
目前在微生物中生产高价值化合物的方法大多使用细胞质作为通用反应容器。然而,竞争途径和代谢交叉对话常常阻止目标化合物在细胞质中有效合成。真核细胞通过利用细胞器来隔离生化途径来控制其代谢的复杂性。受此概念的启发,我们在此将酵母过氧化物酶体转化为香叶基二磷酸衍生化合物的微工厂,重点是单萜类化合物、单萜吲哚生物碱和大麻素。我们在过氧化物酶体中引入了完整的甲羟戊酸途径,将乙酰辅酶 A 转化为几种具有商业重要性的单萜,并实现了比细胞质生产高出 125 倍的产量。此外,过氧化物酶体的生产促进了细胞色素 P450s 的后续修饰,支持()-(-)-柠檬烯高效转化为薄荷醇前体 -异薄荷醇。我们还建立了 8-羟基香叶醇(单萜吲哚生物碱的前体)和大麻素前体大麻酰基酸的合成。我们的研究结果确立了过氧化物酶体工程作为生产异戊二烯的有效策略。