Peretz Asher, Schottelndreier Hella, Aharon-Shamgar Liora Ben, Attali Bernard
Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel.
J Physiol. 2002 Dec 15;545(3):751-66. doi: 10.1113/jphysiol.2002.028381.
The I(KS) K(+) channel plays a major role in repolarizing the cardiac action potential. It consists of an assembly of two structurally distinct alpha and beta subunits called KCNQ1 and KCNE1, respectively. Using two different expression systems, Xenopus oocytes and Chinese hamster ovary cells, we investigated the effects of external protons on homomeric and heteromeric KCNQ1 channels. External acidification (from pH 7.4 to pH 5.5) markedly decreased the homomeric KCNQ1 current amplitude and caused a positive shift (+25 mV) in the voltage dependence of activation. Low external pH (pH(o)) also slowed down the activation and deactivation kinetics and strongly reduced the KCNQ1 inactivation process. In contrast, external acidification reduced the maximum conductance and the macroscopic inactivation of the KCNQ1 mutant L273F by only a small amount. The heteromeric I(KS) channel complex was weakly affected by low pH(o), with minor effects on I(KS) current amplitude. However, substantial current inhibition was produced by protons with the N-terminal KCNE1 deletion mutant Delta11-38. Low pH(o) increased the current amplitude of the pore mutant V319C when co-expressed with KCNE1. The slowing of I(KS) deactivation produced by low pH(o) was absent in the KCNE1 mutant Delta39-43, suggesting that the residues lying at the N-terminal boundary of the transmembrane segment are involved in this process. In all, our results suggest that external acidification acts on homomeric and heteromeric KCNQ1 channels via multiple mechanisms to affect gating and maximum conductance. The external pH effects on I(Kr) versus I(KS) may be important determinants of arrhythmogenicity under conditions of cardiac ischaemia and reperfusion.
I(KS)钾通道在心脏动作电位复极化过程中起主要作用。它由两个结构不同的α和β亚基组装而成,分别称为KCNQ1和KCNE1。我们使用两种不同的表达系统,即非洲爪蟾卵母细胞和中国仓鼠卵巢细胞,研究了细胞外质子对同聚体和异聚体KCNQ1通道的影响。细胞外酸化(从pH 7.4降至pH 5.5)显著降低了同聚体KCNQ1电流幅度,并使激活的电压依赖性发生正向偏移(+25 mV)。低细胞外pH(pH(o))也减缓了激活和失活动力学,并强烈降低了KCNQ1失活过程。相比之下,细胞外酸化仅少量降低了KCNQ1突变体L273F的最大电导和宏观失活。异聚体I(KS)通道复合物受低pH(o)的影响较弱,对I(KS)电流幅度影响较小。然而,N端KCNE1缺失突变体Delta11 - 38的质子会产生显著的电流抑制。当与KCNE1共表达时,低pH(o)增加了孔突变体V319C的电流幅度。KCNE1突变体Delta39 - 43不存在低pH(o)引起的I(KS)失活减慢现象,这表明跨膜段N端边界的残基参与了这一过程。总之,我们的结果表明,细胞外酸化通过多种机制作用于同聚体和异聚体KCNQ1通道,以影响门控和最大电导。在心脏缺血和再灌注条件下,细胞外pH对I(Kr)与I(KS)的影响可能是致心律失常性的重要决定因素。