Suppr超能文献

具有结构零的相关2×2表中风险比的精确无条件推断。

Exact unconditional inference for risk ratio in a correlated 2 x 2 table with structural zero.

作者信息

Tang Nian-Sheng, Tang Man-Lai

机构信息

Centre of Applied Statistics, Yunnan University, Kunming 650091, People's Republic of China.

出版信息

Biometrics. 2002 Dec;58(4):972-80. doi: 10.1111/j.0006-341x.2002.00972.x.

Abstract

In this article, we consider small-sample statistical inference for rate ratio (RR) in a correlated 2 x 2 table with a structural zero in one of the off-diagonal cells. Existing Wald's test statistic and logarithmic transformation test statistic will be adopted for this purpose. Hypothesis testing and confidence interval construction based on large-sample theory will be reviewed first. We then propose reliable small-sample exact unconditional procedures for hypothesis testing and confidence interval construction. We present empirical results to evince the better confidence interval performance of our proposed exact unconditional procedures over the traditional large-sample procedures in small-sample designs. Unlike the findings given in Lui (1998, Biometrics 54, 706-711), our empirical studies show that the existing asymptotic procedures may not attain a prespecified confidence level even in moderate sample-size designs (e.g., n = 50). Our exact unconditional procedures on the other hand do not suffer from this problem. Hence, the asymptotic procedures should be applied with caution. We propose two approximate unconditional confidence interval construction methods that outperform the existing asymptotic ones in terms of coverage probability and expected interval width. Also, we empirically demonstrate that the approximate unconditional tests are more powerful than their associated exact unconditional tests. A real data set from a two-step tuberculosis testing study is used to illustrate the methodologies.

摘要

在本文中,我们考虑在一个非对角单元格中存在结构零的相关2×2表格中对比率比(RR)进行小样本统计推断。为此将采用现有的Wald检验统计量和对数变换检验统计量。首先回顾基于大样本理论的假设检验和置信区间构建。然后,我们提出用于假设检验和置信区间构建的可靠的小样本精确无条件程序。我们给出实证结果,以表明在小样本设计中,我们提出的精确无条件程序比传统的大样本程序具有更好的置信区间性能。与Lui(1998年,《生物统计学》54卷,706 - 711页)给出的结果不同,我们的实证研究表明,即使在中等样本量设计(例如,n = 50)中,现有的渐近程序也可能无法达到预定的置信水平。另一方面,我们的精确无条件程序不存在这个问题。因此,应谨慎应用渐近程序。我们提出了两种近似无条件置信区间构建方法,它们在覆盖概率和预期区间宽度方面优于现有的渐近方法。此外,我们通过实证证明近似无条件检验比其相关的精确无条件检验更具功效。使用来自一项两步结核病检测研究的真实数据集来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验