Usón Isabel, Schmidt Bernhard, von Bülow Rixa, Grimme Susanne, von Figura Kurt, Dauter Miroslawa, Rajashankar Kanagalaghatta R, Dauter Zbigniew, Sheldrick George M
Lehrstuhl für Strukturchemie, Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
Acta Crystallogr D Biol Crystallogr. 2003 Jan;59(Pt 1):57-66. doi: 10.1107/s090744490201884x. Epub 2002 Dec 19.
Improved data quality now makes it feasible to exploit the weak anomalous signal derived only from the sulfurs inherent to the protein or in particular from halide ions incorporated by soaking. The latter technique requires the location of a high number of partially occupied halide sites. This number appears to be roughly proportional to the exposed protein surface. This paper explores the application of dual-space ab initio methods as implemented in the program SHELXD to the location of substructures of sulfur in SAD experiments, bromide in SAD and MAD experiments and iodide using SAD and SIRAS to determine the anomalous-atom substructure. Sets of atoms consistent with the Patterson function were generated as a starting point for the dual-space recycling procedure in SHELXD. The substructure is then expanded to the full structure by maximum-likelihood phasing with SHARP and density modification with the program DM. Success in the location of the substructures and subsequent phasing depends critically on the quality of the data and on the extent of the anomalous signal. This varies with each crystal and soak, but for the same crystal the significance of the anomalous signal was found to be highly sensitive to the redundancy of the intensity measurements, which in some cases made all the difference. This is illustrated by the determination of the previously unknown structure of repeat 11 of the human mannose-6-phosphate/insulin-like growth factor II receptor (Man6P/IGFII-receptor), with 310 amino acids in the asymmetric unit, which was phased by soaking the crystals in a cryoprotectant solution containing halide anions.
如今,数据质量的提升使得利用仅源自蛋白质固有硫原子或特别是通过浸泡引入的卤离子所产生的微弱反常信号变得可行。后一种技术需要定位大量部分占据的卤化物位点。这个数量似乎大致与暴露的蛋白质表面成正比。本文探讨了程序SHELXD中实现的双空间从头算方法在SAD实验中硫亚结构定位、SAD和MAD实验中溴化物定位以及使用SAD和SIRAS确定碘化物反常原子亚结构方面的应用。与帕特森函数一致的原子集被生成,作为SHELXD中双空间循环程序的起点。然后通过SHARP的最大似然相位法和DM程序的密度修正将亚结构扩展为完整结构。亚结构定位及后续相位确定的成功与否关键取决于数据质量和反常信号的强度。这因每个晶体和浸泡情况而异,但对于同一晶体,反常信号的显著性被发现对强度测量的冗余度高度敏感,在某些情况下这起着决定性作用。这通过确定人甘露糖-6-磷酸/胰岛素样生长因子II受体(Man6P/IGFII受体)重复11的先前未知结构得到说明,该结构在不对称单元中有310个氨基酸,通过将晶体浸泡在含有卤离子的冷冻保护剂溶液中进行相位确定。