Pickett Christopher J, Vincent Kylie A, Ibrahim Saad K, Gormal Carol A, Smith Barry E, Best Stephen P
Department of Biological Chemistry, John Innes Centre Norwich, NR4 7UH, UK.
Chemistry. 2003 Jan 3;9(1):76-87. doi: 10.1002/chem.200390033.
The electron-transfer chemistry of the isolated iron-molybdenum cofactor of nitrogenase (FeMoco) has been studied by electrochemical and spectroelectrochemical methods. Two interconverting forms of the cofactor arise from a redox-linked ligand isomerism at the terminal iron atom; this is attributed to rotamerism of an anionic N-methyl formamide ligand bound at this site. FeMoco in its EPR-silent oxidised state is shown to undergo three successive one-electron transfer steps. We argue that the first and second redox processes are associated with electron-transfer delocalised over the iron-sulfur core of the cofactor, whilst the third irreversible process is localised on molybdenum. This is strongly reinforced by spectroelectrochemical studies under (12)CO and (13)CO which reveal two independent carbon monoxide binding sites that are specifically associated with the second (iron core) and third (molybdenum) electron-transfer processes and which give rise to terminal nu((12)CO) bands at 1885 and 1920 cm(-1) respectively. Moreover, in parallel with earlier studies on the enzyme system, it is shown that at low CO concentration, carbon monoxide binds to the cofactor in bridging modes, with nu(CO) bands at 1835 and 1808 cm(-1) that are interconverted by single-electron transfer. Importantly we show that the contentious overall 2e difference in the assignment of the metal oxidation levels in the resting state of the enzyme-bound cofactor, arising from analysis of (57)Fe ENDOR and Mössbauer data, can be resolved in the light of the electron-transfer chemistry of the isolated cofactor described herein.
通过电化学和光谱电化学方法研究了固氮酶的分离铁钼辅因子(FeMoco)的电子转移化学。该辅因子的两种相互转化形式源于末端铁原子处的氧化还原相关配体异构现象;这归因于结合在此位点的阴离子N-甲基甲酰胺配体的旋转异构。处于EPR沉默氧化态的FeMoco显示经历三个连续的单电子转移步骤。我们认为,第一个和第二个氧化还原过程与辅因子铁硫核心上的电子转移离域有关,而第三个不可逆过程则定位于钼上。在(12)CO和(13)CO下的光谱电化学研究有力地证实了这一点,该研究揭示了两个独立的一氧化碳结合位点,它们分别与第二个(铁核心)和第三个(钼)电子转移过程特异性相关,并分别在1885和1920 cm(-1)处产生末端ν((12)CO)带。此外,与早期对酶系统的研究并行,结果表明在低CO浓度下,一氧化碳以桥连模式结合到辅因子上,其ν(CO)带在1835和1808 cm(-1)处,通过单电子转移相互转化。重要的是,我们表明,根据本文所述的分离辅因子的电子转移化学,可以解决因分析(57)Fe ENDOR和穆斯堡尔数据而在酶结合辅因子静止状态下金属氧化态分配中存在争议的整体2e差异。