Suppr超能文献

IR 监测的 CO 抑制氮酶光解:一种具有偶联末端 CO 配体的主要 EPR 沉默物种。

IR-monitored photolysis of CO-inhibited nitrogenase: a major EPR-silent species with coupled terminal CO ligands.

机构信息

Department of Chemistry, University of California, Davis, CA 95616, USA.

出版信息

Chemistry. 2012 Dec 14;18(51):16349-57. doi: 10.1002/chem.201202072. Epub 2012 Nov 7.

Abstract

Fourier transform infrared spectroscopy (FTIR) was used to observe the photolysis and recombination of a new EPR-silent CO-inhibited form of α-H195Q nitrogenase from Azotobacter vinelandii. Photolysis at 4 K reveals a strong negative IR difference band at nu = 1938 cm(-1), along with a weaker negative feature at 1911 cm(-1). These bands and the associated chemical species have both been assigned the label "Hi-3". A positive band at nu = 1921 cm(-1) was assigned to the "Lo-3" photoproduct. By using an isotopic mixture of (12)C (16)O and (13)C (18)O, we show that the Hi-3 bands arise from coupling of two similar CO oscillators with one uncoupled frequency at approximately nu = 1917 cm(-1). Although in previous studies Lo-3 was not observed to recombine, by extending the observation range to 200-240 K, we found that recombination to Hi-3 does indeed occur, with an activation energy of approximately 6.5 kJ mol(-1). The frequencies of the Hi-3 bands suggest terminal CO ligation. This hypothesis was tested with DFT calculations on models with terminal CO ligands on Fe2 and Fe6 of the FeMo-cofactor. An S = 0 model with both CO ligands in exo positions predicts symmetric and asymmetric stretches at nu = 1938 and 1909 cm(-1), respectively, with relative band intensities of about 3.5:1, which is in good agreement with experiment. From the observed IR intensities, Hi-3 was found to be present at a concentration about equal to that of the EPR-active Hi-1 species. The relevance of Hi-3 to the nitrogenase catalytic mechanism and its recently discovered Fischer-Tropsch chemistry is discussed.

摘要

傅里叶变换红外光谱(FTIR)用于观察来自固氮菌的新型 EPR 静默 CO 抑制形式的 α-H195Q 氮酶的光解和重组。在 4 K 下光解,在 ν = 1938 cm(-1)处出现强负 IR 差频带,同时在 1911 cm(-1)处出现较弱的负特征。这些带和相关的化学物质都被标记为“Hi-3”。ν = 1921 cm(-1)处的正带被分配给“Lo-3”光产物。通过使用 (12)C(16)O 和 (13)C(18)O 的同位素混合物,我们表明 Hi-3 带源自两个类似 CO 振荡器的耦合,其中一个未耦合频率约为 ν = 1917 cm(-1)。尽管在先前的研究中未观察到 Lo-3 重组,但通过将观察范围扩展到 200-240 K,我们发现 Hi-3 确实会发生重组,其活化能约为 6.5 kJ mol(-1)。Hi-3 带的频率表明末端 CO 配位。通过对 FeMo 辅因子上 Fe2 和 Fe6 上具有末端 CO 配体的模型进行 DFT 计算,对该假设进行了测试。在 S = 0 模型中,两个 CO 配体均处于外位置,分别预测 ν = 1938 和 1909 cm(-1)处的对称和不对称伸缩,相对带强度约为 3.5:1,与实验结果吻合较好。根据观察到的 IR 强度,Hi-3 的浓度约等于 EPR 活性 Hi-1 物质的浓度。讨论了 Hi-3 与氮酶催化机制及其最近发现的 Fischer-Tropsch 化学的相关性。

相似文献

1
IR-monitored photolysis of CO-inhibited nitrogenase: a major EPR-silent species with coupled terminal CO ligands.
Chemistry. 2012 Dec 14;18(51):16349-57. doi: 10.1002/chem.201202072. Epub 2012 Nov 7.
2
Nitrogenase Chemistry at 10 Kelvin─Phototautomerization and Recombination of CO-Inhibited α-H195Q Enzyme.
Inorg Chem. 2022 Aug 1;61(30):11509-11513. doi: 10.1021/acs.inorgchem.2c00818. Epub 2022 Jul 20.
3
Photolysis of Hi-CO Nitrogenase - Observation of a Plethora of Distinct CO Species using Infrared Spectroscopy.
Eur J Inorg Chem. 2011 May;2011(13):2064-2074. doi: 10.1002/ejic.201100029. Epub 2011 Mar 28.
4
Carbon monoxide binding to α-R277H Mo-nitrogenase - Evidence for multiple pH-dependent species from IR-monitored photolysis.
J Inorg Biochem. 2022 Jul;232:111806. doi: 10.1016/j.jinorgbio.2022.111806. Epub 2022 Mar 28.
7
Docking and migration of carbon monoxide in nitrogenase: the case for gated pockets from infrared spectroscopy and molecular dynamics.
Biochemistry. 2015 Jun 2;54(21):3314-9. doi: 10.1021/acs.biochem.5b00216. Epub 2015 May 15.
8
Structural Characterization of Two CO Molecules Bound to the Nitrogenase Active Site.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5704-5707. doi: 10.1002/anie.202015751. Epub 2021 Jan 27.
9
Photo-lability of CO bound to Mo-nitrogenase from Azotobacter vinelandii.
J Inorg Biochem. 2003 Jan 1;93(1-2):11-7. doi: 10.1016/s0162-0134(02)00480-4.

引用本文的文献

2
Biomimetic [MFeS] Cubanes (M = V/Mo) as Catalysts for a Fischer-Tropsch-like Hydrocarbon Synthesis─A Computational Study.
Inorg Chem. 2025 Jan 13;64(1):479-494. doi: 10.1021/acs.inorgchem.4c04995. Epub 2024 Dec 27.
3
Bridging Carbonyl and Carbyne Complexes of Weak-Field Iron: Electronic Structure and Iron-Carbon Bonding.
J Am Chem Soc. 2024 Nov 27;146(47):32415-32430. doi: 10.1021/jacs.4c08358. Epub 2024 Nov 12.
4
Reaction Mechanism for CO Reduction by Mo-Nitrogenase Studied by QM/MM.
Inorg Chem. 2024 Aug 26;63(34):15951-15963. doi: 10.1021/acs.inorgchem.4c02323. Epub 2024 Aug 14.
5
On the Shoulders of Giants-Reaching for Nitrogenase.
Molecules. 2023 Dec 5;28(24):7959. doi: 10.3390/molecules28247959.
6
Enzymatic Fischer-Tropsch-Type Reactions.
Chem Rev. 2023 May 10;123(9):5755-5797. doi: 10.1021/acs.chemrev.2c00612. Epub 2022 Dec 21.
7
Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system.
FEBS Lett. 2023 Jan;597(1):45-58. doi: 10.1002/1873-3468.14534. Epub 2022 Nov 28.
8
Nitrogenase Chemistry at 10 Kelvin─Phototautomerization and Recombination of CO-Inhibited α-H195Q Enzyme.
Inorg Chem. 2022 Aug 1;61(30):11509-11513. doi: 10.1021/acs.inorgchem.2c00818. Epub 2022 Jul 20.
9
Carbon monoxide binding to α-R277H Mo-nitrogenase - Evidence for multiple pH-dependent species from IR-monitored photolysis.
J Inorg Biochem. 2022 Jul;232:111806. doi: 10.1016/j.jinorgbio.2022.111806. Epub 2022 Mar 28.
10
Carbon Monoxide Binding to the Iron-Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation.
Inorg Chem. 2021 Dec 6;60(23):18031-18047. doi: 10.1021/acs.inorgchem.1c02649. Epub 2021 Nov 12.

本文引用的文献

1
Photolysis of Hi-CO Nitrogenase - Observation of a Plethora of Distinct CO Species using Infrared Spectroscopy.
Eur J Inorg Chem. 2011 May;2011(13):2064-2074. doi: 10.1002/ejic.201100029. Epub 2011 Mar 28.
2
X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.
Science. 2011 Nov 18;334(6058):974-7. doi: 10.1126/science.1206445.
3
Evidence for interstitial carbon in nitrogenase FeMo cofactor.
Science. 2011 Nov 18;334(6058):940. doi: 10.1126/science.1214025.
5
Extending the carbon chain: hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases.
Science. 2011 Aug 5;333(6043):753-5. doi: 10.1126/science.1206883.
6
Fischer-Tropsch chemistry at room temperature?
Angew Chem Int Ed Engl. 2011 Aug 22;50(35):7984-6. doi: 10.1002/anie.201102979. Epub 2011 Jul 14.
7
Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.
Dalton Trans. 2011 Jun 28;40(24):6480-9. doi: 10.1039/c1dt10505a. Epub 2011 May 17.
8
Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor.
Inorg Chem. 2011 Jun 6;50(11):4811-24. doi: 10.1021/ic102446n. Epub 2011 May 5.
9
Tracing the hydrogen source of hydrocarbons formed by vanadium nitrogenase.
Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5545-7. doi: 10.1002/anie.201100869. Epub 2011 Apr 29.
10
How does vanadium nitrogenase reduce CO to hydrocarbons?
Dalton Trans. 2011 May 28;40(20):5516-27. doi: 10.1039/c1dt10240k. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验