Bjornsson Ragnar, Neese Frank, Schrock Richard R, Einsle Oliver, DeBeer Serena
Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim and Der Ruhr, Germany,
J Biol Inorg Chem. 2015 Mar;20(2):447-60. doi: 10.1007/s00775-014-1230-6. Epub 2014 Dec 31.
Biological nitrogen fixation is enabled by molybdenum-dependent nitrogenase enzymes, which effect the reduction of dinitrogen to ammonia using an Fe7MoS9C active site, referred to as the iron molybdenum cofactor or FeMoco. In this mini-review, we summarize the current understanding of the molecular and electronic structure of FeMoco. The advances in our understanding of the active site structure are placed in context with the parallel evolution of synthetic model studies. The recent discovery of Mo(III) in the FeMoco active site is highlighted with an emphasis placed on the important role that model studies have played in this finding. In addition, the reactivities of synthetic models are discussed in terms of their relevance to the enzymatic system.
生物固氮由钼依赖型固氮酶实现,该酶利用一个Fe7MoS9C活性位点(称为铁钼辅因子或FeMoco)将氮气还原为氨。在这篇小型综述中,我们总结了目前对FeMoco分子和电子结构的理解。我们对活性位点结构理解的进展与合成模型研究的平行发展相结合进行阐述。重点强调了在FeMoco活性位点中钼(III)的最新发现,以及模型研究在这一发现中所起的重要作用。此外,还讨论了合成模型的反应活性与酶系统的相关性。