Suppr超能文献

比较计算机可解释的指南模型:一种案例研究方法。

Comparing computer-interpretable guideline models: a case-study approach.

作者信息

Peleg Mor, Tu Samson, Bury Jonathan, Ciccarese Paolo, Fox John, Greenes Robert A, Hall Richard, Johnson Peter D, Jones Neill, Kumar Anand, Miksch Silvia, Quaglini Silvana, Seyfang Andreas, Shortliffe Edward H, Stefanelli Mario

机构信息

Stanford Medical Informatics, Stanford University School of Medicine, Stanford, California 94305-5479, USA.

出版信息

J Am Med Inform Assoc. 2003 Jan-Feb;10(1):52-68. doi: 10.1197/jamia.m1135.

Abstract

OBJECTIVES

Many groups are developing computer-interpretable clinical guidelines (CIGs) for use during clinical encounters. CIGs use "Task-Network Models" for representation but differ in their approaches to addressing particular modeling challenges. We have studied similarities and differences between CIGs in order to identify issues that must be resolved before a consensus on a set of common components can be developed.

DESIGN

We compared six models: Asbru, EON, GLIF, GUIDE, PRODIGY, and PROforma. Collaborators from groups that created these models represented, in their own formalisms, portions of two guidelines: American College of Chest Physicians cough guidelines [correction] and the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.

MEASUREMENTS

We compared the models according to eight components that capture the structure of CIGs. The components enable modelers to encode guidelines as plans that organize decision and action tasks in networks. They also enable the encoded guidelines to be linked with patient data-a key requirement for enabling patient-specific decision support.

RESULTS

We found consensus on many components, including plan organization, expression language, conceptual medical record model, medical concept model, and data abstractions. Differences were most apparent in underlying decision models, goal representation, use of scenarios, and structured medical actions.

CONCLUSION

We identified guideline components that the CIG community could adopt as standards. Some of the participants are pursuing standardization of these components under the auspices of HL7.

摘要

目标

许多团队正在开发可在临床会诊期间使用的计算机可解释临床指南(CIG)。CIG使用“任务网络模型”进行表示,但在应对特定建模挑战的方法上存在差异。我们研究了CIG之间的异同,以确定在就一组通用组件达成共识之前必须解决的问题。

设计

我们比较了六个模型:Asbru、EON、GLIF、GUIDE、PRODIGY和PROforma。创建这些模型的团队的合作者用他们自己的形式主义表示了两条指南的部分内容:美国胸科医师学会咳嗽指南[勘误]和美国国家高血压预防、检测、评估和治疗联合委员会第六次报告。

测量

我们根据捕获CIG结构的八个组件对模型进行了比较。这些组件使建模者能够将指南编码为在网络中组织决策和行动任务的计划。它们还使编码后的指南能够与患者数据相链接,这是实现针对患者的决策支持的关键要求。

结果

我们在许多组件上达成了共识,包括计划组织、表达语言、概念性病历模型、医学概念模型和数据抽象。差异在基础决策模型、目标表示、场景使用和结构化医疗行动方面最为明显。

结论

我们确定了CIG社区可以采用为标准的指南组件。一些参与者正在HL7的支持下推进这些组件的标准化。

相似文献

1
Comparing computer-interpretable guideline models: a case-study approach.
J Am Med Inform Assoc. 2003 Jan-Feb;10(1):52-68. doi: 10.1197/jamia.m1135.
2
A pattern-based analysis of clinical computer-interpretable guideline modeling languages.
J Am Med Inform Assoc. 2007 Nov-Dec;14(6):781-7. doi: 10.1197/jamia.M2389. Epub 2007 Aug 21.
3
Computer-Interpretable Guideline formalisms.
Stud Health Technol Inform. 2008;139:22-43.
6
The InterMed approach to sharable computer-interpretable guidelines: a review.
J Am Med Inform Assoc. 2004 Jan-Feb;11(1):1-10. doi: 10.1197/jamia.M1399. Epub 2003 Oct 5.
7
META-GLARE: A meta-system for defining your own computer interpretable guideline system-Architecture and acquisition.
Artif Intell Med. 2016 Sep;72:22-41. doi: 10.1016/j.artmed.2016.07.002. Epub 2016 Jul 28.
9
Handling expressiveness and comprehensibility requirements in GLIF3.
Stud Health Technol Inform. 2001;84(Pt 1):241-5.
10
Approaches for guideline versioning using GLIF.
AMIA Annu Symp Proc. 2003;2003:509-13.

引用本文的文献

1
A Symbolic AI Approach to Medical Training.
J Med Syst. 2025 Jan 9;49(1):2. doi: 10.1007/s10916-024-02139-y.
2
Design and Implementation of an Electronic Health Record-Integrated Hypertension Management Application.
J Am Heart Assoc. 2024 Jan 16;13(2):e030884. doi: 10.1161/JAHA.123.030884.
4
Obesity Prediction with EHR Data: A deep learning approach with interpretable elements.
ACM Trans Comput Healthc. 2022 Jul;3(3). doi: 10.1145/3506719. Epub 2022 Apr 7.
5
Representing narrative evidence as clinical evidence logic statements.
JAMIA Open. 2022 Apr 11;5(2):ooac024. doi: 10.1093/jamiaopen/ooac024. eCollection 2022 Jul.
7
Local, Early, and Precise: Designing a Clinical Decision Support System for Child and Adolescent Mental Health Services.
Front Psychiatry. 2020 Dec 15;11:564205. doi: 10.3389/fpsyt.2020.564205. eCollection 2020.
10
What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper.
Int J Environ Res Public Health. 2020 Sep 11;17(18):6616. doi: 10.3390/ijerph17186616.

本文引用的文献

4
Clinical utility of HIV-1 genotyping and expert advice: the Havana trial.
AIDS. 2002 Jan 25;16(2):209-18. doi: 10.1097/00002030-200201250-00010.
6
Modeling data and knowledge in the EON guideline architecture.
Stud Health Technol Inform. 2001;84(Pt 1):280-4.
7
Achieving reuse of computable guideline systems.
Stud Health Technol Inform. 2001;84(Pt 1):99-103.
8
Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans.
Artif Intell Med. 2001 May;22(2):111-31. doi: 10.1016/s0933-3657(00)00103-2.
9
Flexible guideline-based patient careflow systems.
Artif Intell Med. 2001 Apr;22(1):65-80. doi: 10.1016/s0933-3657(00)00100-7.
10
Toward the standardization of electronic guidelines.
MD Comput. 2000 Nov-Dec;17(6):39-44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验