Suppr超能文献

体内1H脑肿瘤光谱中短回波时间的自动分类:一项多中心研究。

Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study.

作者信息

Tate A Rosemary, Majós Carles, Moreno Angel, Howe Franklyn A, Griffiths John R, Arús Carles

机构信息

CRC Biomedical MR Research Group, St George's Hospital Medical School, University of London, London, UK.

出版信息

Magn Reson Med. 2003 Jan;49(1):29-36. doi: 10.1002/mrm.10315.

Abstract

Automated pattern recognition techniques are needed to help radiologists categorize MRS data of brain tumors according to histological type and grade. A major question is whether a computer program "trained" on spectra from one hospital will be able to classify those from another, particularly if the acquisition protocol is different. A subset of 144 histopathologically validated brain tumor spectra in the INTERPRET database, obtained from three of the collaborating centers, was grouped into meningiomas, low-grade astrocytomas, and "aggressive tumors" (glioblastomas and metastases). Spectra from two centers formed the training set (94 spectra) while the third acted as the test set (50 spectra). Linear discriminant analysis successfully classified 48/50 in the test set; the remaining two were atypical cases. When the training and test sets were combined, 133 of the 144 spectra were correctly classified using the leave-one-out procedure. These spectra had been obtained using different sequences (STEAM and PRESS), different echo times (20, 30, 31, and 32 ms), different repetition times (1600 and 2000 ms), and different manufacturers' instruments (GE and Philips). Pattern recognition algorithms are less sensitive to acquisition parameters than had been expected.

摘要

需要自动化模式识别技术来帮助放射科医生根据组织学类型和分级对脑肿瘤的磁共振波谱(MRS)数据进行分类。一个主要问题是,在一家医院的光谱上“训练”的计算机程序是否能够对另一家医院的光谱进行分类,特别是如果采集协议不同的话。从三个合作中心获得的INTERPRET数据库中144个经组织病理学验证的脑肿瘤光谱的一个子集,被分为脑膜瘤、低级别星形细胞瘤和“侵袭性肿瘤”(胶质母细胞瘤和转移瘤)。来自两个中心的光谱构成训练集(94个光谱),而第三个中心的光谱作为测试集(50个光谱)。线性判别分析成功地对测试集中的48/50个光谱进行了分类;其余两个是非典型病例。当训练集和测试集合并时,使用留一法程序对144个光谱中的133个进行了正确分类。这些光谱是使用不同的序列(STEAM和PRESS)、不同的回波时间(20、30、31和32毫秒)、不同的重复时间(1600和2000毫秒)以及不同制造商的仪器(GE和飞利浦)获得的。模式识别算法对采集参数的敏感度低于预期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验