Suppr超能文献

利用短回波时间1H磁共振波谱对脑肿瘤进行分类

Classification of brain tumours using short echo time 1H MR spectra.

作者信息

Devos A, Lukas L, Suykens J A K, Vanhamme L, Tate A R, Howe F A, Majós C, Moreno-Torres A, van der Graaf M, Arús C, Van Huffel S

机构信息

SCD-SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee (Leuven), Belgium.

出版信息

J Magn Reson. 2004 Sep;170(1):164-75. doi: 10.1016/j.jmr.2004.06.010.

Abstract

The purpose was to objectively compare the application of several techniques and the use of several input features for brain tumour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblastomas (n = 87), meningiomas (n = 57), metastases (n = 39), and astrocytomas grade II (n = 22) were provided by six centres in the European Union funded INTERPRET project. Linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel and LS-SVM with radial basis function kernel were applied and evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of binary classifiers, while the percentage of correct classifications was used to evaluate the multiclass classifiers. The influence of several factors on the classification performance has been tested: L2- vs. water normalization, magnitude vs. real spectra and baseline correction. The effect of input feature reduction was also investigated by using only the selected frequency regions containing the most discriminatory information, and peak integrated values. Using L2-normalized complete spectra the automated binary classifiers reached a mean test AUC of more than 0.95, except for glioblastomas vs. metastases. Similar results were obtained for all classification techniques and input features except for water normalized spectra, where classification performance was lower. This indicates that data acquisition and processing can be simplified for classification purposes, excluding the need for separate water signal acquisition, baseline correction or phasing.

摘要

目的是客观比较几种技术的应用以及使用磁共振波谱(MRS)进行脑肿瘤分类时几种输入特征的使用情况。来自欧盟资助的INTERPRET项目的六个中心提供了胶质母细胞瘤患者(n = 87)、脑膜瘤患者(n = 57)、转移瘤患者(n = 39)和二级星形细胞瘤患者(n = 22)的短回波时间1H MRS信号。应用线性判别分析、具有线性核的最小二乘支持向量机(LS - SVM)和具有径向基函数核的LS - SVM,并在将数据集分层随机划分为训练集和测试集的超过100次划分上进行评估。接收者操作特征曲线(AUC)下的面积用于测量二分类器的性能,而正确分类的百分比用于评估多分类器。测试了几个因素对分类性能的影响:L2归一化与水归一化、幅度谱与实谱以及基线校正。还通过仅使用包含最具区分性信息的选定频率区域和峰积分值来研究输入特征约简的效果。使用L2归一化的完整谱时,除了胶质母细胞瘤与转移瘤的分类外,自动二分类器的平均测试AUC超过0.95。除了水归一化谱的分类性能较低外,所有分类技术和输入特征都得到了类似的结果。这表明为了分类目的,可以简化数据采集和处理,无需单独采集水信号、进行基线校正或相位调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验