Suppr超能文献

应用于三维共聚焦和宽场荧光显微镜的图像恢复方法比较。

A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

作者信息

Verveer P. J, Gemkow M. J, Jovin T. M

机构信息

Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.

出版信息

J Microsc. 1999 Jan;193(1):50-61. doi: 10.1046/j.1365-2818.1999.00421.x.

Abstract

We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

摘要

我们比较了荧光显微镜中不同的图像恢复方法。根据假设的噪声模型和所采用的正则化类型,使用贝叶斯理论对最常用的算法进行了分类。我们考虑了高斯模型和泊松模型来处理噪声,并结合了蒂霍诺夫正则化、熵正则化、古德粗糙度正则化以及无正则化(最大似然估计)。利用荧光共聚焦成像模拟,采用均方误差准则来检验不同的噪声模型和正则化方法。高斯噪声模型的假设产生的误差仅比泊松模型略高。古德粗糙度正则化是正则化的最佳选择。此外,我们比较了模拟的共聚焦数据和宽视场数据。一般来说,恢复后的共聚焦数据优于恢复后的宽视场数据,但如果宽视场数据有足够高的信号水平,其恢复结果在质量上可能与共聚焦数据相当。最后,给出了实验共聚焦数据和宽视场数据的视觉比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验