Suppr超能文献

GXXXG模体对幽门螺杆菌空泡毒素形成膜通道的重要作用。

Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin.

作者信息

McClain Mark S, Iwamoto Hideki, Cao Ping, Vinion-Dubiel Arlene D, Li Yi, Szabo Gabor, Shao Zhifeng, Cover Timothy L

机构信息

Department of Medicine, Vanderbilt University School of Medicine and the Veterans Affairs Medical Center, Nashville, Tennessee 37232, USA.

出版信息

J Biol Chem. 2003 Apr 4;278(14):12101-8. doi: 10.1074/jbc.M212595200. Epub 2003 Jan 30.

Abstract

Helicobacter pylori secretes a toxin, VacA, that can form anion-selective membrane channels. Within a unique amino-terminal hydrophobic region of VacA, there are three tandem GXXXG motifs (defined by glycines at positions 14, 18, 22, and 26), which are characteristic of transmembrane dimerization sequences. The goals of the current study were to investigate whether these GXXXG motifs are required for membrane channel formation and cytotoxicity and to clarify the role of membrane channel formation in the biological activity of VacA. Six different alanine substitution mutations (P9A, G13A, G14A, G18A, G22A, and G26A) were introduced into the unique hydrophobic region located near the amino terminus of VacA. The effects of these mutations were first analyzed using the TOXCAT system, which permits the study of transmembrane oligomerization of proteins in a natural membrane environment. None of the mutations altered the capacity of ToxR-VacA-maltose-binding protein fusion proteins to insert into a membrane, but G14A and G18A mutations markedly diminished the capacity of the fusion proteins to oligomerize. We then introduced the six alanine substitution mutations into the vacA chromosomal gene of H. pylori and analyzed the properties of purified mutant VacA proteins. VacA-G13A, VacA-G22A, and VacA-G26A induced vacuolation of HeLa cells, whereas VacA-P9A, VacA-G14A, and VacA-G18A did not. Subsequent experiments examined the capacity of each mutant toxin to form membrane channels. In a planar lipid bilayer assay, VacA proteins containing G13A, G22A, and G26A mutations formed anion-selective membrane channels, whereas VacA proteins containing P9A, G14A, and G18A mutations did not. Similarly, VacA-G13A, VacA-G22A, and VacA-G26A induced depolarization of HeLa cells, whereas VacA-P9A, VacA-G14A, and VacA-G18A did not. These data indicate that an intact proline residue and an intact G(14)XXXG(18) motif within the amino-terminal hydrophobic region of VacA are essential for membrane channel formation, and they also provide strong evidence that membrane channel formation is essential for VacA cytotoxicity.

摘要

幽门螺杆菌分泌一种毒素VacA,它能形成阴离子选择性膜通道。在VacA独特的氨基末端疏水区域内,有三个串联的GXXXG基序(由第14、18、22和26位的甘氨酸定义),这是跨膜二聚化序列的特征。本研究的目的是调查这些GXXXG基序是否为膜通道形成和细胞毒性所必需,并阐明膜通道形成在VacA生物活性中的作用。将六个不同的丙氨酸替代突变(P9A、G13A、G14A、G18A、G22A和G26A)引入到VacA氨基末端附近的独特疏水区域。首先使用TOXCAT系统分析这些突变的影响,该系统允许在天然膜环境中研究蛋白质的跨膜寡聚化。这些突变均未改变ToxR-VacA-麦芽糖结合蛋白融合蛋白插入膜中的能力,但G14A和G18A突变显著降低了融合蛋白寡聚化的能力。然后我们将六个丙氨酸替代突变引入幽门螺杆菌的vacA染色体基因,并分析纯化的突变VacA蛋白的特性。VacA-G13A、VacA-G22A和VacA-G26A诱导HeLa细胞空泡化,而VacA-P9A、VacA-G14A和VacA-G18A则不会。随后的实验检测了每种突变毒素形成膜通道的能力。在平面脂质双层测定中,含有G13A、G22A和G26A突变的VacA蛋白形成阴离子选择性膜通道,而含有P9A、G14A和G18A突变的VacA蛋白则不能。同样,VacA-G13A、VacA-G22A和VacA-G26A诱导HeLa细胞去极化,而VacA-P9A、VacA-G14A和VacA-G18A则不会。这些数据表明,VacA氨基末端疏水区域内完整的脯氨酸残基和完整的G(14)XXXG(18)基序对于膜通道形成至关重要,它们也提供了强有力的证据,证明膜通道形成对于VacA细胞毒性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验