Suppr超能文献

细胞内pH对细菌鞭毛马达转速的影响。

Effect of intracellular pH on rotational speed of bacterial flagellar motors.

作者信息

Minamino Tohru, Imae Yasuo, Oosawa Fumio, Kobayashi Yuji, Oosawa Kenji

机构信息

Protonic NanoMachine Project, ERATO, JST, Seika, Kyoto 619-0237, Japan.

出版信息

J Bacteriol. 2003 Feb;185(4):1190-4. doi: 10.1128/JB.185.4.1190-1194.2003.

Abstract

Weak acids such as acetate and benzoate, which partially collapse the transmembrane proton gradient, not only mediate pH taxis but also impair the motility of Escherichia coli and Salmonella at an external pH of 5.5. In this study, we examined in more detail the effect of weak acids on motility at various external pH values. A change of external pH over the range 5.0 to 7.8 hardly affected the swimming speed of E. coli cells in the absence of 34 mM potassium acetate. In contrast, the cells decreased their swimming speed significantly as external pH was shifted from pH 7.0 to 5.0 in the presence of 34 mM acetate. The total proton motive force of E. coli cells was not changed greatly by the presence of acetate. We measured the rotational rate of tethered E. coli cells as a function of external pH. Rotational speed decreased rapidly as the external pH was decreased, and at pH 5.0, the motor stopped completely. When the external pH was returned to 7.0, the motor restarted rotating at almost its original level, indicating that high intracellular proton (H+) concentration does not irreversibly abolish flagellar motor function. Both the swimming speeds and rotation rates of tethered cells of Salmonella also decreased considerably when the external pH was shifted from pH 7.0 to 5.5 in the presence of 20 mM benzoate. We propose that the increase in the intracellular proton concentration interferes with the release of protons from the torque-generating units, resulting in slowing or stopping of the motors.

摘要

诸如乙酸盐和苯甲酸盐之类的弱酸会部分破坏跨膜质子梯度,它们不仅介导pH趋化性,还会在外部pH值为5.5时损害大肠杆菌和沙门氏菌的运动能力。在本研究中,我们更详细地研究了弱酸在不同外部pH值下对运动能力的影响。在不存在34 mM乙酸钾的情况下,外部pH值在5.0至7.8范围内变化几乎不会影响大肠杆菌细胞的游动速度。相反,在存在34 mM乙酸盐的情况下,当外部pH值从pH 7.0变为5.0时,细胞的游动速度显著降低。乙酸盐的存在并未使大肠杆菌细胞的总质子动力发生很大变化。我们测量了固定化大肠杆菌细胞的旋转速率作为外部pH值的函数。随着外部pH值降低,旋转速度迅速下降,在pH 5.0时,马达完全停止。当外部pH值恢复到7.0时,马达几乎以其原始水平重新开始旋转,这表明高细胞内质子(H+)浓度不会不可逆地消除鞭毛马达功能。在存在20 mM苯甲酸盐的情况下,当外部pH值从pH 7.0变为5.5时,沙门氏菌固定化细胞的游动速度和旋转速率也显著降低。我们提出,细胞内质子浓度的增加会干扰质子从扭矩产生单元的释放,从而导致马达减速或停止。

相似文献

1
Effect of intracellular pH on rotational speed of bacterial flagellar motors.
J Bacteriol. 2003 Feb;185(4):1190-4. doi: 10.1128/JB.185.4.1190-1194.2003.
2
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the H-Driven Flagellar Motor.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00727-18. Print 2019 Mar 15.
3
Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor.
J Mol Biol. 2009 Feb 20;386(2):332-8. doi: 10.1016/j.jmb.2008.12.034. Epub 2008 Dec 24.
4
Quantitative measurements of proton motive force and motility in Bacillus subtilis.
J Bacteriol. 1980 Dec;144(3):891-7. doi: 10.1128/jb.144.3.891-897.1980.
5
Solvent-isotope and pH effects on flagellar rotation in Escherichia coli.
Biophys J. 2000 May;78(5):2280-4. doi: 10.1016/S0006-3495(00)76774-9.
6
Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria.
J Bacteriol. 1981 Mar;145(3):1209-21. doi: 10.1128/jb.145.3.1209-1221.1981.
7
Speed of the bacterial flagellar motor near zero load depends on the number of stator units.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11603-11608. doi: 10.1073/pnas.1708054114. Epub 2017 Oct 16.
8
Mechanical limits of bacterial flagellar motors probed by electrorotation.
Biophys J. 1995 Jul;69(1):280-6. doi: 10.1016/S0006-3495(95)79900-3.
9
Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
10
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.

引用本文的文献

1
Species-specific surface dwell times and accumulation of microbes investigated by holographic microscopy.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240265. doi: 10.1098/rsta.2024.0265.
2
Breaking the reproducibility barrier with standardized protocols for plant-microbiome research.
PLoS Biol. 2025 Sep 8;23(9):e3003358. doi: 10.1371/journal.pbio.3003358. eCollection 2025 Sep.
3
Intracellular formate modulates a motility-invasion switch in Salmonella Typhimurium.
PLoS Pathog. 2025 Sep 4;21(9):e1013453. doi: 10.1371/journal.ppat.1013453. eCollection 2025 Sep.
6
Unraveling the Intertwined Effect of pH on Motility and the Microrheology of the Mucin-Based Medium It Swims in.
Microorganisms. 2023 Nov 10;11(11):2745. doi: 10.3390/microorganisms11112745.
7
Quantifying Substrate Protein Secretion via the Type III Secretion System of the Bacterial Flagellum.
Methods Mol Biol. 2024;2715:577-592. doi: 10.1007/978-1-0716-3445-5_36.
9
Lanthanide porphyrinoids as molecular theranostics.
Chem Soc Rev. 2022 Jul 18;51(14):6177-6209. doi: 10.1039/d2cs00275b.
10
pH Distribution along Growing Fungal Hyphae at Microscale.
J Fungi (Basel). 2022 Jun 3;8(6):599. doi: 10.3390/jof8060599.

本文引用的文献

1
Conformational change in the stator of the bacterial flagellar motor.
Biochemistry. 2001 Oct 30;40(43):13041-50. doi: 10.1021/bi011263o.
2
Constraints on models for the flagellar rotary motor.
Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):491-501. doi: 10.1098/rstb.2000.0590.
3
Solvent-isotope and pH effects on flagellar rotation in Escherichia coli.
Biophys J. 2000 May;78(5):2280-4. doi: 10.1016/S0006-3495(00)76774-9.
4
Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436-41. doi: 10.1073/pnas.95.11.6436.
5
Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB.
J Bacteriol. 1998 May;180(10):2729-35. doi: 10.1128/JB.180.10.2729-2735.1998.
7
Isolation, characterization and structure of bacterial flagellar motors containing the switch complex.
J Mol Biol. 1994 Jan 28;235(4):1261-70. doi: 10.1006/jmbi.1994.1079.
8
Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro.
J Bacteriol. 1994 Jun;176(12):3683-91. doi: 10.1128/jb.176.12.3683-3691.1994.
9
Fluctuation analysis of rotational speeds of the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3502-6. doi: 10.1073/pnas.92.8.3502.
10
Fluctuations in rotation rate of the flagellar motor of Escherichia coli.
Biophys J. 1995 Jul;69(1):250-63. doi: 10.1016/S0006-3495(95)79896-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验