Suppr超能文献

溶剂同位素和pH值对大肠杆菌鞭毛旋转的影响。

Solvent-isotope and pH effects on flagellar rotation in Escherichia coli.

作者信息

Chen X, Berg H C

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Biophys J. 2000 May;78(5):2280-4. doi: 10.1016/S0006-3495(00)76774-9.

Abstract

We studied changes in speed of the flagellar rotary motor of Escherichia coli when tethered cells or cells carrying small latex spheres on flagellar stubs were shifted from H(2)O to D(2)O or subjected to changes in external pH. In the high-torque, low-speed regime, solvent isotope effects were found to be small; in the low-torque, high-speed regime, they were large. The boundaries between these regimes were close to those found earlier in measurements of the torque-speed relationship of the flagellar rotary motor (, Biophys. J. 65:2201-2216;, Biophys. J., 78:1036-1041). This observation provides direct evidence that the decline in torque at high speed is due primarily to limits in rates of proton transfer. However, variations of speed (and torque) with shifts of external pH (from 4.7 to 8.8) were small for both regimes. Therefore, rates of proton transfer are not very dependent on external pH.

摘要

我们研究了大肠杆菌鞭毛旋转马达的速度变化,当束缚细胞或在鞭毛残端携带小乳胶球的细胞从H₂O转移到D₂O或外部pH发生变化时。在高扭矩、低转速状态下,发现溶剂同位素效应较小;在低扭矩、高转速状态下,效应较大。这些状态之间的界限与早期在鞭毛旋转马达扭矩-速度关系测量中发现的界限接近(,《生物物理杂志》65:2201 - 2216;,《生物物理杂志》,78:1036 - 1041)。这一观察结果提供了直接证据,表明高速时扭矩的下降主要是由于质子转移速率的限制。然而,对于两种状态,随着外部pH从4.7变化到8.8,速度(和扭矩)的变化都很小。因此,质子转移速率不太依赖于外部pH。

相似文献

1
Solvent-isotope and pH effects on flagellar rotation in Escherichia coli.
Biophys J. 2000 May;78(5):2280-4. doi: 10.1016/S0006-3495(00)76774-9.
2
Torque-speed relationship of the flagellar rotary motor of Escherichia coli.
Biophys J. 2000 Feb;78(2):1036-41. doi: 10.1016/S0006-3495(00)76662-8.
3
Torque generated by the flagellar motor of Escherichia coli while driven backward.
Biophys J. 1999 Jan;76(1 Pt 1):580-7. doi: 10.1016/S0006-3495(99)77226-7.
4
Study of the torque of the bacterial flagellar motor using a rotating electric field.
Biophys J. 1993 Mar;64(3):925-33. doi: 10.1016/S0006-3495(93)81454-1.
5
The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8748-51. doi: 10.1073/pnas.1533395100. Epub 2003 Jul 11.
6
Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
7
Effect of intracellular pH on rotational speed of bacterial flagellar motors.
J Bacteriol. 2003 Feb;185(4):1190-4. doi: 10.1128/JB.185.4.1190-1194.2003.
8
Thermal and solvent-isotope effects on the flagellar rotary motor near zero load.
Biophys J. 2010 May 19;98(10):2121-6. doi: 10.1016/j.bpj.2010.01.061.
9
Torque generation by the flagellar rotary motor.
Biophys J. 1995 Apr;68(4 Suppl):163S-166S; discussion 166S-167S.
10
Limiting (zero-load) speed of the rotary motor of is independent of the number of torque-generating units.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12478-12482. doi: 10.1073/pnas.1713655114. Epub 2017 Nov 6.

引用本文的文献

1
Torque-speed relationship of the flagellar motor with dual-stator systems in .
mBio. 2024 Dec 11;15(12):e0074524. doi: 10.1128/mbio.00745-24. Epub 2024 Oct 30.
2
Dynamic exchange of two types of stator units in flagellar motor in response to environmental changes.
Comput Struct Biotechnol J. 2020 Oct 15;18:2897-2907. doi: 10.1016/j.csbj.2020.10.009. eCollection 2020.
3
Coupling Ion Specificity of the Flagellar Stator Proteins MotA1/MotB1 of sp. TCA20.
Biomolecules. 2020 Jul 20;10(7):1078. doi: 10.3390/biom10071078.
4
Flagella-Driven Motility of Bacteria.
Biomolecules. 2019 Jul 14;9(7):279. doi: 10.3390/biom9070279.
5
8
The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.
Biophysics (Nagoya-shi). 2013 Dec 26;9:173-81. doi: 10.2142/biophysics.9.173. eCollection 2013.
9
Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor.
Biophysics (Nagoya-shi). 2014 Jun 14;10:35-41. doi: 10.2142/biophysics.10.35. eCollection 2014.
10
Structure and function of the bi-directional bacterial flagellar motor.
Biomolecules. 2014 Feb 18;4(1):217-34. doi: 10.3390/biom4010217.

本文引用的文献

2
Torque-speed relationship of the flagellar rotary motor of Escherichia coli.
Biophys J. 2000 Feb;78(2):1036-41. doi: 10.1016/S0006-3495(00)76662-8.
3
The bacterial flagella motor.
Adv Microb Physiol. 1999;41:291-337. doi: 10.1016/s0065-2911(08)60169-1.
5
The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force.
J Bacteriol. 1999 Mar;181(6):1927-30. doi: 10.1128/JB.181.6.1927-1930.1999.
8
Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436-41. doi: 10.1073/pnas.95.11.6436.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验