Suppr超能文献

低温玻璃中玻色子峰和热导率平台的起源。

The origin of the boson peak and thermal conductivity plateau in low-temperature glasses.

作者信息

Lubchenko Vassiliy, Wolynes Peter G

机构信息

Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1515-8. doi: 10.1073/pnas.252786999. Epub 2003 Feb 10.

Abstract

We argue that the intrinsic glassy degrees of freedom in amorphous solids giving rise to the thermal conductivity plateau and the "boson peak" in the heat capacity at moderately low temperatures are directly connected to those motions giving rise to the two-level-like excitations seen at still lower temperatures. These degrees of freedom can be thought of as strongly anharmonic transitions between the local minima of the glassy energy landscape that are accompanied by ripplon-like domain wall motions of the glassy mosaic structure predicted to occur at T(g) by the random first-order transition theory. The energy spectrum of the vibrations of the mosaic depends on the glass transition temperature, the Debye frequency, and the molecular length scale. The resulting spectrum reproduces the experimental low-temperature boson peak. The "nonuniversality" of the thermal conductivity plateau depends on k(B)T(g)omega(D) and arises from calculable interactions with the phonons.

摘要

我们认为,非晶态固体中产生热导率平台以及在适度低温下比热容中“玻色子峰”的本征玻璃态自由度,与在更低温度下出现的类似两能级激发的运动直接相关。这些自由度可被视为玻璃态能量景观局部极小值之间的强非谐跃迁,伴随着随机一级跃迁理论预测在T(g)时发生的玻璃态镶嵌结构的类涟漪子域壁运动。镶嵌结构振动的能谱取决于玻璃化转变温度、德拜频率和分子长度尺度。由此产生的能谱再现了实验低温玻色子峰。热导率平台的“非普适性”取决于k(B)T(g)omega(D),并源于与声子的可计算相互作用。

相似文献

1
The origin of the boson peak and thermal conductivity plateau in low-temperature glasses.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1515-8. doi: 10.1073/pnas.252786999. Epub 2003 Feb 10.
2
Hysteresis of Low-Temperature Thermal Conductivity and Boson Peak in Glassy (g) AsS: Nanocluster Contribution.
Nanoscale Res Lett. 2017 Dec;12(1):345. doi: 10.1186/s11671-017-2125-6. Epub 2017 May 10.
3
Phonon interpretation of the 'boson peak' in supercooled liquids.
Nature. 2003 Mar 20;422(6929):289-92. doi: 10.1038/nature01475.
4
Intrinsic quantum excitations of low temperature glasses.
Phys Rev Lett. 2001 Nov 5;87(19):195901. doi: 10.1103/PhysRevLett.87.195901. Epub 2001 Oct 19.
5
Thermal conductivity and specific heat of thin-film amorphous silicon.
Phys Rev Lett. 2006 Feb 10;96(5):055902. doi: 10.1103/PhysRevLett.96.055902. Epub 2006 Feb 7.
6
Universal link between the boson peak and transverse phonons in glass.
Nat Mater. 2008 Nov;7(11):870-7. doi: 10.1038/nmat2293. Epub 2008 Oct 12.
8
Low-temperature thermal properties of a hyperaged geological glass.
J Phys Condens Matter. 2013 Jul 24;25(29):295402. doi: 10.1088/0953-8984/25/29/295402. Epub 2013 Jul 2.
9
Vibrational density of states and specific heat in glasses from random matrix theory.
Phys Rev E. 2019 Dec;100(6-1):062131. doi: 10.1103/PhysRevE.100.062131.
10
Protein boson peak originated from hydration-related multiple minima energy landscape.
J Am Chem Soc. 2005 Jun 22;127(24):8705-9. doi: 10.1021/ja0425886.

引用本文的文献

1
Relationship between the boson peak and first sharp diffraction peak in glasses.
Sci Rep. 2025 Mar 20;15(1):9617. doi: 10.1038/s41598-025-94454-8.
2
Thermal conductivity of glasses: first-principles theory and applications.
NPJ Comput Mater. 2023;9(1):106. doi: 10.1038/s41524-023-01033-4. Epub 2023 Jun 19.
3
Discovery of a Low Thermal Conductivity Oxide Guided by Probe Structure Prediction and Machine Learning.
Angew Chem Int Ed Engl. 2021 Jul 19;60(30):16457-16465. doi: 10.1002/anie.202102073. Epub 2021 Jun 17.
4
Role of Anharmonic Interactions for Vibration Density of States in α-Cristobalite.
Materials (Basel). 2021 Jan 29;14(3):617. doi: 10.3390/ma14030617.
5
Rigidity, secondary structure, and the universality of the boson peak in proteins.
Biophys J. 2014 Jun 17;106(12):2667-74. doi: 10.1016/j.bpj.2014.05.009.
6
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16907-12. doi: 10.1073/pnas.0903922106. Epub 2009 Sep 23.
7
A unified model of protein dynamics.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5129-34. doi: 10.1073/pnas.0900336106. Epub 2009 Feb 27.

本文引用的文献

1
Intrinsic quantum excitations of low temperature glasses.
Phys Rev Lett. 2001 Nov 5;87(19):195901. doi: 10.1103/PhysRevLett.87.195901. Epub 2001 Oct 19.
2
Vibrational spectrum of topologically disordered systems.
Phys Rev Lett. 2001 Aug 20;87(8):085502. doi: 10.1103/PhysRevLett.87.085502. Epub 2001 Aug 2.
3
Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids.
Phys Rev Lett. 2001 Jun 11;86(24):5526-9. doi: 10.1103/PhysRevLett.86.5526.
4
Direct observation of molecular cooperativity near the glass transition.
Nature. 2000 Dec 7;408(6813):695-8. doi: 10.1038/35047037.
5
Fragilities of liquids predicted from the random first order transition theory of glasses.
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2990-4. doi: 10.1073/pnas.97.7.2990.
6
Lower limit to the thermal conductivity of disordered crystals.
Phys Rev B Condens Matter. 1992 Sep 1;46(10):6131-6140. doi: 10.1103/physrevb.46.6131.
7
Thermal conductivity of amorphous solids.
Phys Rev B Condens Matter. 1986 Oct 15;34(8):5684-5690. doi: 10.1103/physrevb.34.5684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验