Hamberg Leena M, Rhea James T, Hunter George J, Thrall James H
Department of Radiology, Perfusion and Physiology Analysis Laboratory, Massachusetts General Hospital, 55 Fruit St, Gray Bldg, Rm B238, Boston, MA 02114, USA.
Radiology. 2003 Mar;226(3):762-72. doi: 10.1148/radiol.2263020205.
To determine the dose characteristics of multi-detector row computed tomography (CT) and to provide tabulated dose values and rules of thumb that assist in minimizing the radiation dose at multi-detector row CT.
Weighted CT dose index (CTDI100w) values were obtained from three multi-detector row CT scanners (LightSpeed; GE Medical Systems, Milwaukee, Wis) for both head and body CT modes by using standard CT-dose phantoms. The CTDI100w was determined as a function of x-ray tube voltage (80, 100, 120, 140 kVp), tube current (range, 50-380 mA), tube rotation time (0.5-4.0 seconds), radiation profile width (RPW) (5, 10, 15, 20 mm), and acquisition mode (helical high-quality and high-speed modes and axial one-, two-, and four-section modes). Statistical regression was performed to characterize the relationships between CTDI100w and various technique factors.
The CTDI100w (milligray) increased linearly with tube current: in head mode, CTDI100w = (0.391 mGy/mA +/- 0.004) x tube current (milliampere) (r2 = 0.999); in body mode, CTDI100w = (0.162 mGy/mA +/- 0.002) x tube current (milliampere) (r2 = 0.999). The CTDI100w increased linearly with rotation time: in head mode, CTDI100w = (34.7 mGy/sec +/- 0.2) x rotation time (seconds) (r2 = 1.0); in body mode, CTDI100w = (13.957 mGy/sec +/- 0.005) x rotation time (seconds) (r2 = 1.0). The relationship of normalized CTDI100w (milligrays per 100 mAs) with tube voltage followed a power law: in head mode, CTDI100w = (0.00016 mGy/100 mAs. kVp +/- 0.00007) x (tube voltage)(2.5+/-0.1) (r2 = 0.997); in body mode, CTDI100w = (0.000012 mGy/100 mAs. kVp +/- 0.000007) x (tube voltage)(2.8+/-0.1) (r2 = 0.996). In all scanning modes, CTDI100w decreased when RPW increased. CTDI100w was 10% higher in head mode and 13% lower in body mode compared with the value suggested by the manufacturer, which is displayed at the scanner console. When deposited power exceeded 24 kW, CTDI100w increased by 10% as a result of use of the large focal spot.
The authors provide a set of tables of radiation dose as a function of imaging protocol to facilitate implementation of radiation dose-efficient studies.
确定多排探测器计算机断层扫描(CT)的剂量特征,并提供有助于在多排探测器CT中使辐射剂量最小化的剂量值表和经验法则。
使用标准CT剂量模体,从三台多排探测器CT扫描仪(LightSpeed;GE医疗系统公司,威斯康星州密尔沃基)获取头部和身体CT模式下的加权CT剂量指数(CTDI100w)值。CTDI100w被确定为X射线管电压(80、100、120、140 kVp)、管电流(范围50 - 380 mA)、管旋转时间(0.5 - 4.0秒)、辐射剖面宽度(RPW)(5、10、15、20 mm)以及采集模式(螺旋高质量和高速模式以及轴向单排、双排和四排模式)的函数。进行统计回归以描述CTDI100w与各种技术因素之间的关系。
CTDI100w(毫戈瑞)随管电流呈线性增加:在头部模式下,CTDI100w =(0.391 mGy/mA ± 0.004)×管电流(毫安)(r2 = 0.999);在身体模式下,CTDI100w =(0.162 mGy/mA ± 0.002)×管电流(毫安)(r2 = 0.999)。CTDI100w随旋转时间呈线性增加:在头部模式下,CTDI100w =(34.7 mGy/秒 ± 0.2)×旋转时间(秒)(r2 = 1.0);在身体模式下,CTDI100w =(13.957 mGy/秒 ± 0.005)×旋转时间(秒)(r2 = 1.0)。归一化CTDI100w(每100 mAs的毫戈瑞)与管电压的关系遵循幂律:在头部模式下,CTDI100w =(0.00016 mGy/100 mAs·kVp ± 0.00007)×(管电压)(2.5 ± 0.1)(r2 = 0.997);在身体模式下,CTDI100w =(0.000012 mGy/100 mAs·kVp ± 0.000007)×(管电压)(2.8 ± 0.1)(r2 = 0.996)。在所有扫描模式下,当RPW增加时CTDI100w降低。与制造商在扫描控制台显示的值相比,头部模式下CTDI100w高10%,身体模式下低13%。当沉积功率超过24 kW时,由于使用大焦点,CTDI100w增加10%。
作者提供了一组作为成像协议函数的辐射剂量表,以促进高效辐射剂量研究的实施。