Jacquez Geoffrey M, Greiling Dunrie A
TerraSeer, Inc, Ann Arbor, MI, USA.
Int J Health Geogr. 2003 Feb 17;2(1):3. doi: 10.1186/1476-072x-2-3.
Analyses of spatial disease patterns usually employ a univariate approach that uses one technique to identify disease clusters. Because different methods are sensitive to different aspects of spatial pattern, an approach employing a battery of techniques is expected to describe geographic variation in human health more fully. This two-part study employs a multi-method approach to elucidate geographic variation in cancer incidence in Long Island, New York, and to evaluate spatial association with air-borne toxics. This first paper uses the local Moran statistic to identify cancer hotspots and spatial outliers. We evaluated the geographic distributions of breast cancer in females and colorectal and lung cancer in males and females in Nassau, Queens, and Suffolk counties, New York, USA. We calculated standardized morbidity ratios (SMR values) from New York State Department of Health (NYSDOH) data. RESULTS: We identified significant local clusters of high and low SMR and significant spatial outliers for each cancer-gender combination. We then compared our results with the study conducted by NYSDOH using Kulldorff's spatial scan statistic. We identified patterns on a smaller spatial scale with different cluster shapes than the NYSDOH analysis did, a consequence of different statistical methods and analysis scale. CONCLUSION: This is a methodological and comparative study to evaluate whether there is substantial benefit added by using a variety of techniques for geographic pattern detection at different spatial scales. We located significant spatial pattern in cancer morbidity in Nassau, Queens, and Suffolk counties. These results broadly agree with the results of other studies that used different techniques, but differ in specifics. The differences in our results and that of the NYSDOH underscore the need for an exploratory, integrative, and multi-scalar approach to assessing geographic patterns of disease, as different methods identify different patterns. We recommend that future studies of geographic patterns use a concordance of evidence from a multiscalar integrative geographic approach to assure that 1) different aspects of spatial pattern are fully identified and 2) the results from the suite of analyses are logically consistent.
疾病空间模式分析通常采用单变量方法,即使用一种技术来识别疾病聚集区。由于不同方法对空间模式的不同方面敏感,因此采用一系列技术的方法有望更全面地描述人类健康的地理差异。这项分为两部分的研究采用多方法途径来阐明纽约长岛癌症发病率的地理差异,并评估与空气传播毒物的空间关联。第一篇论文使用局部莫兰统计量来识别癌症热点和空间异常值。我们评估了美国纽约拿骚县、皇后区和萨福克县女性乳腺癌以及男性和女性结直肠癌和肺癌的地理分布。我们根据纽约州卫生部(NYSDOH)的数据计算了标准化发病比(SMR值)。结果:我们为每种癌症-性别组合确定了显著的高和低SMR局部聚集区以及显著的空间异常值。然后,我们将结果与NYSDOH使用 Kulldorff 空间扫描统计量进行的研究进行了比较。我们识别出的模式在空间尺度上比NYSDOH分析更小,且聚类形状不同,这是不同统计方法和分析尺度的结果。结论:这是一项方法学和比较性研究,旨在评估在不同空间尺度上使用多种技术进行地理模式检测是否能带来实质性益处。我们在拿骚县、皇后区和萨福克县的癌症发病率中发现了显著的空间模式。这些结果与其他使用不同技术的研究结果大致一致,但在具体细节上有所不同。我们的结果与NYSDOH的结果差异凸显了采用探索性、综合性和多尺度方法来评估疾病地理模式的必要性,因为不同方法识别出不同的模式。我们建议未来的疾病地理模式研究采用多尺度综合地理方法的证据一致性,以确保:1)充分识别空间模式的不同方面;2)一系列分析的结果在逻辑上是一致的。