Suppr超能文献

毛细血管中红细胞的动态聚集

Dynamical clustering of red blood cells in capillary vessels.

作者信息

Boryczko Krzysztof, Dzwinel Witold, Yuen David A

机构信息

AGH Institute of Computer Science, al. Mickiewicza 30, 30-059, Kraków, Poland.

出版信息

J Mol Model. 2003 Feb;9(1):16-33. doi: 10.1007/s00894-002-0105-x. Epub 2003 Jan 16.

Abstract

We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

摘要

我们采用离散粒子方法对由红细胞(RBCs)、血浆和毛细血管壁组成的三维系统的动力学进行了建模。血细胞和毛细血管壁由相互作用的粒子网格组成,粒子间存在近邻间的谐和力。我们运用经典力学,用由类似弹簧的粒子网格构成的双凹盘来模拟红细胞的弹性特性。流体粒子方法允许将血浆建模为粒子集合,其中每个粒子代表流体的一个集体单元,由其质量、转动惯量、平动和角动量定义。通过考虑红细胞和血浆在各种形状的毛细血管中流动,对血细胞的实际行为进行建模。使用了三种类型的血管:有阻塞点的管道、弯曲血管和分支毛细血管。在毛细血管中很容易形成红细胞簇。几何形状中的阻塞点和其他不规则之处会影响流动和红细胞形状,大大增加凝血效果。我们还讨论了来自血液物理性质的其他凝血因素,如血浆的粘度和红细胞的弹性。通过使用100万到1000万个粒子进行了具有足够分辨率的建模。离散粒子模拟为在微观尺度上对复杂的粘弹性流体动力学进行建模开辟了一条新途径,其中液相和固相均用离散粒子处理。图 红细胞沿弯曲毛细血管流动的流体粒子模拟的快照。红色对应最高速度。我们可以观察到在血浆流动最停滞的地方红细胞聚集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验