Kobayashi Tetsuya, Chen Luonan, Aihara Kazuyuki
Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-8656, Japan.
J Theor Biol. 2003 Apr 7;221(3):379-99. doi: 10.1006/jtbi.2003.3190.
In this paper, we develop a new methodology to design synthetic genetic switch networks with multiple genes and time delays, by using monotone dynamical systems. We show that the networks with only positive feedback loops have no stable oscillation but stable equilibria whose stability is independent of the time delays. In other words, such systems have ideal properties for switch networks and can be designed without consideration of time delays, because the systems can be reduced from functional spaces to Euclidian spaces. Therefore, we can ensure that the designed switches function correctly even with uncertain delays. We first prove the basic properties of the genetic networks composed of only positive feedback loops, and then propose a procedure to design the switches, which drastically simplifies analysis of the switches and makes theoretical analysis and design tractable even for large-scaled systems. Finally, to demonstrate our theoretical results, we show biologically plausible examples by designing a synthetic genetic switch with experimentally well investigated lacI, tetR, and cI genes for numerical simulation.
在本文中,我们通过使用单调动力系统,开发了一种新方法来设计具有多个基因和时间延迟的合成遗传开关网络。我们表明,仅具有正反馈回路的网络没有稳定振荡,但具有稳定平衡点,其稳定性与时间延迟无关。换句话说,此类系统具有开关网络的理想特性,并且在设计时无需考虑时间延迟,因为这些系统可以从函数空间简化为欧几里得空间。因此,即使存在不确定的延迟,我们也能确保所设计的开关正常工作。我们首先证明仅由正反馈回路组成的遗传网络的基本特性,然后提出一种设计开关的程序,这极大地简化了对开关的分析,并且即使对于大规模系统,也能使理论分析和设计变得易于处理。最后,为了证明我们的理论结果,我们通过设计一个具有实验上研究充分的lacI、tetR和cI基因的合成遗传开关进行数值模拟,展示了生物学上合理的示例。