Suppr超能文献

基于微观力学的哈弗斯骨中流体流动的多孔弹性建模。

Micromechanically based poroelastic modeling of fluid flow in Haversian bone.

作者信息

Swan C C, Lakes R S, Brand R A, Stewart K J

机构信息

4120 Seamans Center for Engineering Arts, Department of Civil and Environmental Engineering, University of Iowa, Iowa 52242, USA.

出版信息

J Biomech Eng. 2003 Feb;125(1):25-37. doi: 10.1115/1.1535191.

Abstract

To explore the hypothesis that load-induced fluid flow in bone is a mechano-transduction mechanism in bone adaptation, unit cell micro-mechanical techniques are used to relate the microstructure of Haversian cortical bone to its effective poroelastic properties. Computational poroelastic models are then applied to compute in vitro Haversian fluid flows in a prismatic specimen of cortical bone during harmonic bending excitations over the frequency range of 10(0) to 10(6) Hz. At each frequency considered, the steady state harmonic response of the poroelastic bone specimen is computed using complex frequency-domain finite element analysis. At the higher frequencies considered, the breakdown of Poisueille flow in Haversian canals is modeled by introduction of a complex fluid viscosity. Peak bone fluid pressures are found to increase linearly with loading frequency in proportion to peak bone stress up to frequencies of approximately 10 kHz. Haversian fluid shear stresses are found to increase linearly with excitation frequency and loading magnitude up until the breakdown of Poisueille flow. Tan delta values associated with the energy dissipated by load-induced fluid flow are also compared with values measured experimentally in a concurrent broadband spectral analysis of bone. The computational models indicate that fluid shear stresses and fluid pressures in the Haversian system could, under physiologically realistic loading, easily reach the level of a few Pascals, which have been shown in other works to elicit cell responses in vitro.

摘要

为了探究骨骼中负荷诱导的流体流动是骨骼适应性中的一种机械转导机制这一假说,采用单位细胞微机械技术将哈弗斯骨皮质骨的微观结构与其有效孔隙弹性特性联系起来。然后应用计算孔隙弹性模型来计算在频率范围为10(0)至10(6)Hz的谐波弯曲激励下,皮质骨棱柱形标本中的体外哈弗斯流体流动。在所考虑的每个频率下,使用复频域有限元分析计算孔隙弹性骨标本的稳态谐波响应。在考虑的较高频率下,通过引入复流体粘度对哈弗斯管中泊肃叶流的破坏进行建模。发现峰值骨流体压力在高达约10kHz的频率下与加载频率成线性增加,与峰值骨应力成比例。发现哈弗斯流体剪应力随着激励频率和加载幅度线性增加,直至泊肃叶流破坏。还将与负荷诱导的流体流动耗散的能量相关的损耗因子值与在同时进行的骨骼宽带光谱分析中实验测量的值进行比较。计算模型表明,在生理现实的负荷下,哈弗斯系统中的流体剪应力和流体压力很容易达到几帕斯卡的水平,在其他研究中已表明这会在体外引发细胞反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验