Bociu Lorena, Broussard Matthew, Guidoboni Giovanna, Strikwerda Sarah
Department of Mathematics, NC State University, NC.
Maine College of Engineering and Computing, University of Maine, ME.
Multiscale Model Simul. 2025;23(1). doi: 10.1137/23m1628073.
In biomechanics, local phenomena, such as tissue perfusion, are strictly related to the global features of the surrounding blood circulation. In this paper, we propose a heterogeneous model where a local, accurate, 3D description of tissue perfusion by means of fluid flows through deformable porous media equations is coupled with a systemic, 0D, lumped model of the remainder of the circulation, where the fluid flow through a vascular network is described via its analog with a current flowing through an electric circuit. This represents a multiscale strategy, which couples an initial boundary value problem to be used in a specific tissue region with an initial value problem in the surrounding circulatory system. This PDE/ODE coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across models at different scales, and careful consideration is taken to address this interface mismatch. The resulting system involves PDEs of mixed type with interface conditions depending on nonlinear ODEs. A new result on local existence of solutions for this multiscale interface coupling is provided in this article.
在生物力学中,局部现象,如组织灌注,与周围血液循环的整体特征密切相关。在本文中,我们提出了一个异质模型,其中通过可变形多孔介质方程的流体流动对组织灌注进行局部、精确的三维描述,并与循环系统其余部分的系统零维集总模型相结合,在该模型中,通过血管网络的流体流动通过与电流在电路中流动的类比来描述。这代表了一种多尺度策略,它将在特定组织区域中使用的初边值问题与周围循环系统中的初值问题相结合。这种偏微分方程/常微分方程的耦合导致了界面条件,这些条件强制在不同尺度的模型之间实现质量连续性和应力平衡,并且我们仔细考虑以解决这种界面不匹配问题。所得系统涉及具有依赖于非线性常微分方程的界面条件的混合型偏微分方程。本文给出了关于这种多尺度界面耦合解的局部存在性的一个新结果。