Gallippi Caterina M, Nightingale Kathryn R, Trahey Gregg E
Duke University Department of Biomedical Engineering, Durham, NC 27708, USA.
Ultrasound Med Biol. 2003 Nov;29(11):1583-92. doi: 10.1016/j.ultrasmedbio.2003.07.002.
Blind source separation (BSS) for adaptive filtering is presented in application to imaging both physiological and acoustic radiation force impulse (ARFI)-induced tissue and blood motion in the common carotid artery. The collected raw radiofrequency (RF) data includes vessel wall motion, blood flow and ARFI-induced motion. In the context of these complex motion patterns, the same BSS adaptive filtering method was employed for three diverse applications: 1. clutter filtering ensembles prior to blood velocity estimation, 2. extracting small axial velocity components from noisy velocity measurements given large flow angles and 3. reducing noise in measured ARFI-induced tissue displacement profiles to enhance differentiation of local tissue structures. The filter separated physiological vessel wall motion from axial blood flow and ARFI-induced motion; successful filter performance is demonstrated in velocity estimates, color flow images and ARFI displacement profiles. The results demonstrate the breadth of applications for BSS adaptive filtering in the clinical imaging environment.
本文介绍了自适应滤波的盲源分离(BSS)技术在成像中的应用,该成像用于同时观察生理运动以及声学辐射力脉冲(ARFI)诱发的颈总动脉组织和血液运动。采集的原始射频(RF)数据包括血管壁运动、血流以及ARFI诱发的运动。在这些复杂运动模式的背景下,相同的BSS自适应滤波方法被应用于三种不同的场景:1. 在估计血流速度之前进行杂波滤波集成;2. 在大血流角度情况下,从有噪声的速度测量中提取小的轴向速度分量;3. 降低测量的ARFI诱发组织位移轮廓中的噪声,以增强局部组织结构的区分度。该滤波器将生理血管壁运动与轴向血流及ARFI诱发的运动分离开来;在速度估计、彩色血流图像和ARFI位移轮廓中均展示了滤波器的成功性能。结果表明了BSS自适应滤波在临床成像环境中的广泛应用。