Suppr超能文献

通过静电计算推导得出的铁蛋白中三重和四重通道的功能特性。

Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations.

作者信息

Takahashi Takuya, Kuyucak Serdar

机构信息

Research Center for Computational Science, Okazaki National Research Institute, 38, Aza-Saigou-naka, Myodaiji-machi, Okazaki, Aichi, 444-8585, Japan.

出版信息

Biophys J. 2003 Apr;84(4):2256-63. doi: 10.1016/S0006-3495(03)75031-0.

Abstract

The iron storage protein ferritin contains threefold and fourfold symmetric channels that are thought to provide pathways for the transfer of Fe(2+) ions in and out of the protein. Using the known crystal structure of the ferritin protein, we perform electrostatic potential energy calculations to elucidate the functional properties of these channels. The threefold channel is shown to be responsible for the transit of Fe(2+) ions. Monovalent ions can also diffuse through the threefold channel but presence of divalent ions in the pore retards this process leading to a selectivity mechanism similar to the one observed in calcium channels. The fourfold channel is found to be impermeant to all cations with the possible exception of protons. Because proton transfer is essential to maintain the electroneutrality of the protein during iron deposition, we suggest that the function of the fourfold channel is to form a "proton wire" that facilitates their transfer in and out of ferritin.

摘要

铁储存蛋白铁蛋白含有三重对称和四重对称通道,据认为这些通道为Fe(2+)离子进出该蛋白提供了途径。利用铁蛋白已知的晶体结构,我们进行了静电势能计算,以阐明这些通道的功能特性。结果表明,三重通道负责Fe(2+)离子的转运。单价离子也可以通过三重通道扩散,但孔中存在二价离子会阻碍这一过程,从而导致一种类似于在钙通道中观察到的选择性机制。发现四重通道对所有阳离子(质子可能除外)均不通透。由于质子转移对于在铁沉积过程中维持蛋白的电中性至关重要,我们认为四重通道的功能是形成一条“质子线”,以促进质子进出铁蛋白。

相似文献

2
The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans.
Nat Struct Biol. 2003 Apr;10(4):285-90. doi: 10.1038/nsb909.
3
Gramicidin A channel as a test ground for molecular dynamics force fields.
Biophys J. 2003 Apr;84(4):2159-68. doi: 10.1016/S0006-3495(03)75022-X.
4
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5.
7
A fast in silico simulation of ion flux through the large-pore channel proteins.
Biophys J. 2002 Dec;83(6):3001-11. doi: 10.1016/S0006-3495(02)75306-X.
8
Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7925-30. doi: 10.1073/pnas.1318417111. Epub 2014 May 19.
9
Electrostatic and Structural Bases of Fe2+ Translocation through Ferritin Channels.
J Biol Chem. 2016 Dec 2;291(49):25617-25628. doi: 10.1074/jbc.M116.748046. Epub 2016 Oct 18.
10
The dynamics and energetics of water permeation and proton exclusion in aquaporins.
Curr Opin Struct Biol. 2005 Apr;15(2):176-83. doi: 10.1016/j.sbi.2005.02.003.

引用本文的文献

1
Structural Flexibility and Disassembly Kinetics of Single Ferritin Molecules Using Optical Nanotweezers.
ACS Nano. 2024 Jun 18;18(24):15617-15626. doi: 10.1021/acsnano.4c01221. Epub 2024 Jun 8.
2
Nanoformulation of the Broad-Spectrum Hydrophobic Antiviral Vacuolar ATPase Inhibitor Diphyllin in Human Recombinant -ferritin.
Int J Nanomedicine. 2024 Apr 30;19:3907-3917. doi: 10.2147/IJN.S452119. eCollection 2024.
3
Optical Monitoring of Iron Loading into Single, Native Ferritin Proteins.
Nano Lett. 2023 Apr 26;23(8):3251-3258. doi: 10.1021/acs.nanolett.3c00042. Epub 2023 Apr 13.
4
Advances in Ferritin Physiology and Possible Implications in Bacterial Infection.
Int J Mol Sci. 2023 Feb 28;24(5):4659. doi: 10.3390/ijms24054659.
5
Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development.
Biochim Biophys Acta Gen Subj. 2023 Mar;1867(3):130288. doi: 10.1016/j.bbagen.2022.130288. Epub 2022 Dec 5.
6
Crystallographic characterization of a marine invertebrate ferritin from the sea cucumber Apostichopus japonicus.
FEBS Open Bio. 2022 Mar;12(3):664-674. doi: 10.1002/2211-5463.13375. Epub 2022 Feb 7.
7
Cryo-EM structure of a thermostable bacterial nanocompartment.
IUCrJ. 2021 Apr 2;8(Pt 3):342-350. doi: 10.1107/S2052252521001949. eCollection 2021 May 1.
8
Structural comparison of two ferritins from the marine invertebrate Phascolosoma esculenta.
FEBS Open Bio. 2021 Mar;11(3):793-803. doi: 10.1002/2211-5463.13080. Epub 2021 Feb 28.

本文引用的文献

1
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
2
Modeling diverse range of potassium channels with Brownian dynamics.
Biophys J. 2002 Jul;83(1):263-77. doi: 10.1016/S0006-3495(02)75167-9.
3
Simulation approaches to ion channel structure-function relationships.
Q Rev Biophys. 2001 Nov;34(4):473-561. doi: 10.1017/s0033583501003729.
6
Mechanisms of permeation and selectivity in calcium channels.
Biophys J. 2001 Jan;80(1):195-214. doi: 10.1016/S0006-3495(01)76007-9.
7
Ion channels, permeation, and electrostatics: insight into the function of KcsA.
Biochemistry. 2000 Nov 7;39(44):13295-306. doi: 10.1021/bi001567v.
10
Permeation of ions across the potassium channel: Brownian dynamics studies.
Biophys J. 1999 Nov;77(5):2517-33. doi: 10.1016/S0006-3495(99)77087-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验