Suppr超能文献

通过淀粉样纤维的可控自组装和选择性金属沉积构建的导电纳米线。

Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition.

作者信息

Scheibel Thomas, Parthasarathy Raghuveer, Sawicki George, Lin Xiao-Min, Jaeger Heinrich, Lindquist Susan L

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4527-32. doi: 10.1073/pnas.0431081100. Epub 2003 Apr 2.

Abstract

Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximately 100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.

摘要

纳米级电子学领域的最新研究集中在小型器件的工作原理以及实现有用电路的方案上。与已有的“自上而下”制造技术不同,分子自组装正作为一种制造纳米结构材料的“自下而上”方法崭露头角。生物大分子,尤其是蛋白质,具有许多有价值的特性,但物理稳定性差和电学特性不佳阻碍了它们直接用于电路。在此,我们描述了利用自组装的淀粉样蛋白纤维构建纳米线元件的方法。酿酒酵母朊病毒决定簇Sup35p的N端和中间区域(NM)自组装产生了宽度为10纳米的蛋白质纤维,这些纤维在各种苛刻的物理条件下都很稳定。其长度可通过组装条件在60纳米至数百微米的范围内大致控制。一种经过基因改造的NM变体,带有可反应的、表面可及的半胱氨酸残基,被用于将NM纤维与胶体金颗粒共价连接。将这些纤维放置在金电极上,通过从盐中还原沉积金属银和金对胶体金进行高度特异性的化学增强,从而沉积额外的金属。所得的银线和金线宽度约为100纳米。这些生物模板化金属线展现出了固体金属线的导电特性,如低电阻和欧姆行为。利用这类材料,应该能够将蛋白质功能的非凡多样性和特异性应用于纳米级电路。

相似文献

5
Spider-silk-based fabrication of nanogaps and wires.基于蜘蛛丝的纳米间隙和纳米线制造。
Nanotechnology. 2012 Jun 29;23(25):255304. doi: 10.1088/0957-4484/23/25/255304. Epub 2012 May 31.
10
DNA-Mold Templated Assembly of Conductive Gold Nanowires.DNA 引导的金纳米线的导电组装。
Nano Lett. 2018 Mar 14;18(3):2116-2123. doi: 10.1021/acs.nanolett.8b00344. Epub 2018 Mar 1.

引用本文的文献

8
Gold nanoparticle-coated apoferritin conductive nanowires.金纳米颗粒包覆的脱铁铁蛋白导电纳米线
RSC Adv. 2023 Jun 27;13(28):19420-19428. doi: 10.1039/d3ra03186a. eCollection 2023 Jun 22.
10
Living electronics: A catalogue of engineered living electronic components.活体电子学:工程化活体电子元件目录。
Microb Biotechnol. 2023 Mar;16(3):507-533. doi: 10.1111/1751-7915.14171. Epub 2022 Dec 14.

本文引用的文献

2
Au-nanoparticle nanowires based on DNA and polylysine templates.基于DNA和聚赖氨酸模板的金纳米颗粒纳米线
Angew Chem Int Ed Engl. 2002 Jul 2;41(13):2323-7. doi: 10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验