Dipietro L, Sabatini A M, Dario P
Scuola Superiore S. Anna, Pisa, Italy.
Med Biol Eng Comput. 2003 Mar;41(2):124-32. doi: 10.1007/BF02344879.
Artificial neural networks (ANNs) have been used to identify the relationship between electromyographic (EMG) activity and arm kinematics during the execution of motor tasks. Although considerable work has been devoted to showing that ANNs perform this mapping, there has been little work to explore any relationship with physiological properties of the neuromuscular systems. A back-propagation through time (BPTT) ANN was used to map the EMG of five selected muscles (pectoralis major (PM), anterior deltoid (AD), posterior deltoid (PD), biceps brachii (BB) and triceps brachii (TB)) on arm kinematics in seven normal subjects performing three-dimensional unrestrained grasping movements. To investigate the physiological validity of the BPTT-ANN, inputs were artificially altered, and the predicted outputs were analysed. Results show that the BPTT-ANN performed the mapping correctly (root mean square (RMS) error between target and predicted outputs averaged across subject test sets was 0.092 +/- 0.015). Moreover, it provided insights into the roles of muscles in performing the movement (average indexes measuring the output alteration with respect to the target were 0.070 +/- 0.027, 0.356 +/- 0.172, 0.568 +/- 0.413, 0.510 +/- 0.268, 0.681 +/- 0.430 for PM, AD, PD, BB, TB, respectively, in the movement forward phase, and 0.077 +/- 0.015, 0.179 +/- 0.147, 0.291 +/- 0.247, 0.671 +/- 0.054, 0.232 +/- 0.097 in the return phase).
人工神经网络(ANNs)已被用于识别运动任务执行过程中肌电图(EMG)活动与手臂运动学之间的关系。尽管已有大量工作致力于证明人工神经网络能够执行这种映射,但很少有工作探索其与神经肌肉系统生理特性之间的任何关系。使用了一种时间反向传播(BPTT)人工神经网络,对七名正常受试者在进行三维无约束抓握运动时,将五个选定肌肉(胸大肌(PM)、三角肌前束(AD)、三角肌后束(PD)、肱二头肌(BB)和肱三头肌(TB))的肌电图映射到手臂运动学上。为了研究BPTT人工神经网络的生理有效性,人工改变输入,并对预测输出进行分析。结果表明,BPTT人工神经网络能够正确执行映射(跨受试者测试集平均的目标输出与预测输出之间的均方根(RMS)误差为0.092±0.015)。此外,它还揭示了肌肉在执行运动中的作用(在向前运动阶段,测量相对于目标输出变化的平均指标,PM、AD、PD、BB、TB分别为0.070±0.027、0.356±0.172、0.568±0.413、0.510±0.268、0.681±0.430;在返回阶段分别为0.077±0.015、0.179±0.147、0.291±0.247、0.671±0.054、0.232±0.097)。