Suppr超能文献

莱茵衣藻中Fe²⁺的积累。二氧化碳和可逆氢化酶厌氧诱导的影响。

Accumulation of ferrous iron in Chlamydomonas reinhardtii. Influence of CO2 and anaerobic induction of the reversible hydrogenase.

作者信息

Semin Boris K, Davletshina Lira N, Novakova Alla A, Kiseleva Tat'yana Y, Lanchinskaya Victoriya Y, Aleksandrov Anatolii Y, Seifulina Nora, Ivanov Il'ya I, Seibert Michael, Rubin Andrei B

机构信息

Biological Faculty, Moscow State University, Russia.

出版信息

Plant Physiol. 2003 Apr;131(4):1756-64. doi: 10.1104/pp.102.018200.

Abstract

The green alga, Chlamydomonas reinhardtii, can photoproduce molecular H(2) via ferredoxin and the reversible [Fe]hydrogenase enzyme under anaerobic conditions. Recently, a novel approach for sustained H(2) gas photoproduction was discovered in cell cultures subjected to S-deprived conditions (A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, M. Seibert [2000] Plant Physiol 122: 127-135). The close relationship between S and Fe in the H(2)-production process is of interest because Fe-S clusters are constituents of both ferredoxin and hydrogenase. In this study, we used Mössbauer spectroscopy to examine both the uptake of Fe by the alga at different CO(2) concentrations during growth and the influence of anaerobiosis on the accumulation of Fe. Algal cells grown in media with (57)Fe(III) at elevated (3%, v/v) CO(2) concentration exhibit elevated levels of Fe and have two comparable pools of the ion: (a) Fe(III) with Mössbauer parameters of quadrupole splitting = 0.65 mm s(-1) and isomeric shift = 0.46 mm s(-1) and (b) Fe(II) with quadrupole splitting = 3.1 mm s(-1) and isomeric shift = 1.36 mm s(-1). Disruption of the cells and use of the specific Fe chelator, bathophenanthroline, have demonstrated that the Fe(II) pool is located inside the cell. The amount of Fe(III) in the cells increases with the age of the algal culture, whereas the amount of Fe(II) remains constant on a chlorophyll basis. Growing the algae under atmospheric CO(2) (limiting) conditions, compared with 3% (v/v) CO(2), resulted in a decrease in the intracellular Fe(II) content by a factor of 3. Incubating C. reinhardtii cells, grown at atmospheric CO(2) for 3 h in the dark under anaerobic conditions, not only induced hydrogenase activity but also increased the Fe(II) content in the cells up to the saturation level observed in cells grown aerobically at high CO(2). This result is novel and suggests a correlation between the amount of Fe(II) cations stored in the cells, the CO(2) concentration, and anaerobiosis. A comparison of Fe-uptake results with a cyanobacterium, yeast, and algae suggests that the intracellular Fe(II) pool in C. reinhardtii may reside in the cell vacuole.

摘要

绿藻莱茵衣藻(Chlamydomonas reinhardtii)在厌氧条件下可通过铁氧化还原蛋白和可逆的[Fe]氢化酶光产生分子氢(H₂)。最近,在缺硫条件下的细胞培养物中发现了一种持续光产生氢气的新方法(A. 梅利斯、L. 张、M. 福雷斯蒂耶、M.L. 吉拉尔迪、M. 塞贝特[2000]《植物生理学》122: 127 - 135)。在氢气产生过程中硫和铁之间的密切关系备受关注,因为铁硫簇是铁氧化还原蛋白和氢化酶的组成成分。在本研究中,我们使用穆斯堡尔光谱来检测藻类在生长过程中不同二氧化碳浓度下对铁的吸收以及厌氧对铁积累的影响。在(57)Fe(III)存在且二氧化碳浓度升高(3%,v/v)的培养基中生长的藻类细胞,铁含量升高,并且有两个相当的离子池:(a)四极分裂的穆斯堡尔参数为0.65 mm s⁻¹且同质异能移为0.46 mm s⁻¹的Fe(III),以及(b)四极分裂为3.1 mm s⁻¹且同质异能移为1.36 mm s⁻¹的Fe(II)。细胞破碎以及使用特定的铁螯合剂邻二氮杂菲已证明Fe(II)池位于细胞内部。细胞中Fe(III)的量随着藻类培养物的老化而增加,而以叶绿素为基础,Fe(II)的量保持恒定。与3%(v/v)二氧化碳相比,在大气二氧化碳(限制)条件下培养藻类导致细胞内Fe(II)含量降低了三分之一。将在大气二氧化碳条件下生长的莱茵衣藻细胞在黑暗中厌氧培养3小时,不仅诱导了氢化酶活性,还使细胞内Fe(II)含量增加到在高二氧化碳条件下好氧生长的细胞中观察到的饱和水平。这一结果很新颖,表明细胞中储存的Fe(II)阳离子量、二氧化碳浓度和厌氧之间存在相关性。将铁吸收结果与一种蓝细菌、酵母和藻类进行比较表明,莱茵衣藻细胞内的Fe(II)池可能存在于细胞液泡中。

相似文献

2
4
Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
Biotechnol Bioeng. 2002 Jun 30;78(7):731-40. doi: 10.1002/bit.10254.
6
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
J Biol Chem. 2009 Mar 13;284(11):7201-13. doi: 10.1074/jbc.M803917200. Epub 2008 Dec 31.
7
Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.
Eur J Biochem. 2003 Jul;270(13):2750-8. doi: 10.1046/j.1432-1033.2003.03656.
9
A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
J Biotechnol. 2007 Mar 10;128(4):776-87. doi: 10.1016/j.jbiotec.2006.12.025. Epub 2007 Jan 13.

引用本文的文献

1
Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth.
RSC Adv. 2018 Jun 4;8(36):20263-20274. doi: 10.1039/c8ra00951a. eCollection 2018 May 30.
2
Iron economy in Chlamydomonas reinhardtii.
Front Plant Sci. 2013 Sep 2;4:337. doi: 10.3389/fpls.2013.00337.
4
Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis.
Photosynth Res. 2010 Jul;105(1):39-49. doi: 10.1007/s11120-010-9562-8. Epub 2010 Jun 10.

本文引用的文献

1
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
J Gen Physiol. 1942 Nov 20;26(2):219-40. doi: 10.1085/jgp.26.2.219.
2
Oxygen sensitivity of algal H2- production.
Appl Biochem Biotechnol. 1997 Spring;63-65:141-51. doi: 10.1007/BF02920420.
3
Photosynthetic hydrogen and oxygen production: kinetic studies.
Science. 1982 Jan 15;215(4530):291-3. doi: 10.1126/science.215.4530.291.
4
COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.
Plant Physiol. 1949 Jan;24(1):1-15. doi: 10.1104/pp.24.1.1.
5
Iron: Nutritious, Noxious, and Not Readily Available.
Plant Physiol. 1994 Mar;104(3):815-820. doi: 10.1104/pp.104.3.815.
7
CCC1 is a transporter that mediates vacuolar iron storage in yeast.
J Biol Chem. 2001 Aug 3;276(31):29515-9. doi: 10.1074/jbc.M103944200. Epub 2001 Jun 4.
8
Microalgae: a green source of renewable H(2).
Trends Biotechnol. 2000 Dec;18(12):506-11. doi: 10.1016/s0167-7799(00)01511-0.
10
Mechanisms for redox control of gene expression.
Annu Rev Microbiol. 1999;53:495-523. doi: 10.1146/annurev.micro.53.1.495.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验