Semin Boris K, Davletshina Lira N, Novakova Alla A, Kiseleva Tat'yana Y, Lanchinskaya Victoriya Y, Aleksandrov Anatolii Y, Seifulina Nora, Ivanov Il'ya I, Seibert Michael, Rubin Andrei B
Biological Faculty, Moscow State University, Russia.
Plant Physiol. 2003 Apr;131(4):1756-64. doi: 10.1104/pp.102.018200.
The green alga, Chlamydomonas reinhardtii, can photoproduce molecular H(2) via ferredoxin and the reversible [Fe]hydrogenase enzyme under anaerobic conditions. Recently, a novel approach for sustained H(2) gas photoproduction was discovered in cell cultures subjected to S-deprived conditions (A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, M. Seibert [2000] Plant Physiol 122: 127-135). The close relationship between S and Fe in the H(2)-production process is of interest because Fe-S clusters are constituents of both ferredoxin and hydrogenase. In this study, we used Mössbauer spectroscopy to examine both the uptake of Fe by the alga at different CO(2) concentrations during growth and the influence of anaerobiosis on the accumulation of Fe. Algal cells grown in media with (57)Fe(III) at elevated (3%, v/v) CO(2) concentration exhibit elevated levels of Fe and have two comparable pools of the ion: (a) Fe(III) with Mössbauer parameters of quadrupole splitting = 0.65 mm s(-1) and isomeric shift = 0.46 mm s(-1) and (b) Fe(II) with quadrupole splitting = 3.1 mm s(-1) and isomeric shift = 1.36 mm s(-1). Disruption of the cells and use of the specific Fe chelator, bathophenanthroline, have demonstrated that the Fe(II) pool is located inside the cell. The amount of Fe(III) in the cells increases with the age of the algal culture, whereas the amount of Fe(II) remains constant on a chlorophyll basis. Growing the algae under atmospheric CO(2) (limiting) conditions, compared with 3% (v/v) CO(2), resulted in a decrease in the intracellular Fe(II) content by a factor of 3. Incubating C. reinhardtii cells, grown at atmospheric CO(2) for 3 h in the dark under anaerobic conditions, not only induced hydrogenase activity but also increased the Fe(II) content in the cells up to the saturation level observed in cells grown aerobically at high CO(2). This result is novel and suggests a correlation between the amount of Fe(II) cations stored in the cells, the CO(2) concentration, and anaerobiosis. A comparison of Fe-uptake results with a cyanobacterium, yeast, and algae suggests that the intracellular Fe(II) pool in C. reinhardtii may reside in the cell vacuole.
绿藻莱茵衣藻(Chlamydomonas reinhardtii)在厌氧条件下可通过铁氧化还原蛋白和可逆的[Fe]氢化酶光产生分子氢(H₂)。最近,在缺硫条件下的细胞培养物中发现了一种持续光产生氢气的新方法(A. 梅利斯、L. 张、M. 福雷斯蒂耶、M.L. 吉拉尔迪、M. 塞贝特[2000]《植物生理学》122: 127 - 135)。在氢气产生过程中硫和铁之间的密切关系备受关注,因为铁硫簇是铁氧化还原蛋白和氢化酶的组成成分。在本研究中,我们使用穆斯堡尔光谱来检测藻类在生长过程中不同二氧化碳浓度下对铁的吸收以及厌氧对铁积累的影响。在(57)Fe(III)存在且二氧化碳浓度升高(3%,v/v)的培养基中生长的藻类细胞,铁含量升高,并且有两个相当的离子池:(a)四极分裂的穆斯堡尔参数为0.65 mm s⁻¹且同质异能移为0.46 mm s⁻¹的Fe(III),以及(b)四极分裂为3.1 mm s⁻¹且同质异能移为1.36 mm s⁻¹的Fe(II)。细胞破碎以及使用特定的铁螯合剂邻二氮杂菲已证明Fe(II)池位于细胞内部。细胞中Fe(III)的量随着藻类培养物的老化而增加,而以叶绿素为基础,Fe(II)的量保持恒定。与3%(v/v)二氧化碳相比,在大气二氧化碳(限制)条件下培养藻类导致细胞内Fe(II)含量降低了三分之一。将在大气二氧化碳条件下生长的莱茵衣藻细胞在黑暗中厌氧培养3小时,不仅诱导了氢化酶活性,还使细胞内Fe(II)含量增加到在高二氧化碳条件下好氧生长的细胞中观察到的饱和水平。这一结果很新颖,表明细胞中储存的Fe(II)阳离子量、二氧化碳浓度和厌氧之间存在相关性。将铁吸收结果与一种蓝细菌、酵母和藻类进行比较表明,莱茵衣藻细胞内的Fe(II)池可能存在于细胞液泡中。