Suppr超能文献

莱茵衣藻中氧释放的可逆失活后持续的光生物制氢

Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.

作者信息

Melis A, Zhang L, Forestier M, Ghirardi M L, Seibert M

机构信息

Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, California 94720-3102, USA.

出版信息

Plant Physiol. 2000 Jan;122(1):127-36. doi: 10.1104/pp.122.1.127.

Abstract

The work describes a novel approach for sustained photobiological production of H(2) gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H(2) production method circumvents the severe O(2) sensitivity of the reversible hydrogenase by temporally separating photosynthetic O(2) evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H(2) production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O(2) evolution. Under these conditions, oxidative respiration by the cells in the light depleted O(2) and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H(2) gas production was observed in the light but not in the dark. The mechanism of H(2) production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b(6)-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H(2) evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H(2) in the chloroplast stroma.

摘要

这项工作描述了一种通过莱茵衣藻中可逆氢化酶途径持续光生物制氢的新方法。这种单细胞两阶段制氢方法通过暂时分离光合放氧和碳积累(阶段1)与细胞代谢物消耗及伴随的产氢过程(阶段2),规避了可逆氢化酶对氧气的高度敏感性。当培养物缺硫时,实现了从阶段1到阶段2的转变,这会使光系统II(PSII)和放氧过程可逆失活。在这些条件下,细胞在光照下进行氧化呼吸消耗氧气,导致培养物中出现厌氧状态,这对于诱导可逆氢化酶是必要且充分的。随后,在光照下观察到细胞持续产氢,而在黑暗中则没有。产氢机制涉及蛋白质消耗以及电子从内源性底物传递到叶绿体类囊体中的细胞色素b(6)-f和PSI复合物。产氢需要PSI吸收光,这表明铁氧还蛋白的光还原之后是向可逆氢化酶的电子供体过程。后者在叶绿体基质中催化质子还原为分子氢。

相似文献

4
Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
Biotechnol Bioeng. 2002 Jun 30;78(7):731-40. doi: 10.1002/bit.10254.
7
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Planta. 2008 Jan;227(2):397-407. doi: 10.1007/s00425-007-0626-8. Epub 2007 Sep 21.

引用本文的文献

3
Outlook on Synthetic Biology-Driven Hydrogen Production: Lessons from Algal Photosynthesis Applied to Cyanobacteria.
Energy Fuels. 2025 Mar 11;39(11):4987-5006. doi: 10.1021/acs.energyfuels.4c04772. eCollection 2025 Mar 20.
5
6
Light-Driven H Production in : Lessons from Engineering of Photosynthesis.
Plants (Basel). 2024 Jul 30;13(15):2114. doi: 10.3390/plants13152114.
7
The Microalgae for Bioremediation and Bioproduct Production.
Cells. 2024 Jul 2;13(13):1137. doi: 10.3390/cells13131137.
8
Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications.
Heliyon. 2024 May 14;10(10):e31170. doi: 10.1016/j.heliyon.2024.e31170. eCollection 2024 May 30.
9
The Alga Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties.
Int J Mol Sci. 2023 Dec 9;24(24):17311. doi: 10.3390/ijms242417311.
10
Towards industrial biological hydrogen production: a review.
World J Microbiol Biotechnol. 2023 Dec 7;40(1):37. doi: 10.1007/s11274-023-03845-4.

本文引用的文献

2
The potential applications of cyanobacterial photosynthesis for clean technologies.
Photosynth Res. 1995 Nov;46(1-2):159-67. doi: 10.1007/BF00020426.
3
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
J Gen Physiol. 1942 Nov 20;26(2):219-40. doi: 10.1085/jgp.26.2.219.
4
Energetic efficiency of hydrogen photoevolution by algal water splitting.
Biophys J. 1988 Aug;54(2):365-8. doi: 10.1016/S0006-3495(88)82968-0.
5
Oxygen sensitivity of algal H2- production.
Appl Biochem Biotechnol. 1997 Spring;63-65:141-51. doi: 10.1007/BF02920420.
6
Hydrogen Evolution by Nitrogen-Fixing Anabaena cylindrica Cultures.
Science. 1974 Apr 12;184(4133):174-5. doi: 10.1126/science.184.4133.174.
7
Photosynthetic hydrogen and oxygen production: kinetic studies.
Science. 1982 Jan 15;215(4530):291-3. doi: 10.1126/science.215.4530.291.
8
Fermentative Metabolism of Chlamydomonas reinhardii: III. Photoassimilation of Acetate.
Plant Physiol. 1986 Sep;82(1):160-6. doi: 10.1104/pp.82.1.160.
9
Hydrogenase-Mediated Activities in Isolated Chloroplasts of Chlamydomonas reinhardii.
Plant Physiol. 1986 Feb;80(2):360-3. doi: 10.1104/pp.80.2.360.
10
Activation and de novo synthesis of hydrogenase in chlamydomonas.
Plant Physiol. 1984 Dec;76(4):1086-9. doi: 10.1104/pp.76.4.1086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验